Skip to main content
Log in

Glutamate receptors of the A5 region modulate cardiovascular responses evoked from the dorsomedial hypothalamic nucleus and perifornical area

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

To assess the possible function of glutamate in the interaction between the dorsomedial hypothalamic nucleus-perifornical area (DMH-PeF) and the A5 pontine region (A5), cardiovascular and respiratory changes were studied in response to electrical stimulation of the DMH-PeF (1 ms pulses, 30–50 μA given at 100 Hz for 5 s) before and after the microinjection of kynurenic acid (non-specific glutamate receptor antagonist; 50 nl, 5 nmol), MK-801 (NMDA receptor antagonist; 50 nl, 50 nmol), CNQX (non-NMDA receptor antagonist; 50 nl, 50 nmol) or MCPG (metabotropic glutamate receptor antagonist; 50 nl, 5 nmol) within the A5 region. DMH-PeF electrical stimulation elicited a pressor (p < 0.001) and tachycardic response (p < 0.001) which was accompanied by an inspiratory facilitation characterised by an increase in respiratory rate (p < 0.001) due to a decrease in expiratory time (p < 0.01). Kynurenic acid within the A5 region decreased the tachycardia (p < 0.001) and the intensity of the blood pressure response (p < 0.001) to DMH-PeF stimulation. After the microinjection of MK-801 and CNQX into the A5 region, the magnitude of the tachycardia and the pressor response were decreased (p < 0.05 and p < 0.01; p < 0.001 and p < 0.05, respectively). After MCPG microinjection into the A5 region, a decrease in the tachycardia (p < 0.001) with no changes in the pressor response was observed during DMH-PeF stimulation. The respiratory response elicited by DMH-PeF stimulation was not changed after the microinjection of kynurenic acid, MK-801, CNQX or MCPG within the A5 region. These results suggest that A5 region glutamate receptors play a role in the cardiovascular response elicited from the DMH-PeF. The possible mechanisms involved in these interactions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abbott SB, Kanbar R, Bochorishvili G, Coates MB, Stornetta RL, Guyenet PG (2012) C1 neurons excite locus coeruleus and A5 noradrenergic neurons along with sympathetic outflow in rats. J Physiol 590:2897–2915

    Article  CAS  Google Scholar 

  2. Benarroch EE, Schmeichel AM, Low PA, Sandroni P, Parisi JE (2008) Loss of A5 noradrenergic neurons in multiple system atrophy. Acta Neuropathol 115(6):629–634

    Article  CAS  Google Scholar 

  3. Bruinstroop E, Cano G, Vanderhorst VG, Cavalcante JC, Wirth J, Sena-Esteves M, Saper CB (2012) Spinal projections of the A5, A6 (locus coeruleus), and A7 noradrenergic cell groups in rats. J Comp Neurol 520:1985–2001

    Article  CAS  Google Scholar 

  4. Byrum CE, Stornetta R, Guyenet PG (1984) Electrophysiological properties of spinally-projecting A5 noradrenergic neurons. Brain Res 303:15–29

    Article  CAS  Google Scholar 

  5. Byrum CE, Guyenet PG (1987) Afferent and efferent connections of the A5 noradrenergic cell group in the rat. J Comp Neurol 261:529–542

    Article  CAS  Google Scholar 

  6. Dampney RAL (2015) Central mechanisms regulating coordinated cardiovascular and respiratory function during stress and arousal. Am J Physiol Regul Integr Comp Physiol 309:R429–R443

    Article  CAS  Google Scholar 

  7. Dampney RAL (2016) Central neural control of the cardiovascular system: current perspectives. Adv Physiol Educ 40:283–296

    Article  Google Scholar 

  8. Dawid-Milner MS, Lara JP, Gonzalez-Baron S, Spyer KM (2001) Respiratory effects of stimulation of cell bodies of the A5 region in the anaesthetised rat. Pflugers Arch 441:434–443

    Article  CAS  Google Scholar 

  9. Dawid Milner MS, Lara JP, Lopez de Miguel MP, Lopez-Gonzalez MV, Spyer KM, Gonzalez-Baron S (2003) A5 region modulation of the cardiorespiratory responses evoked from parabrachial cell bodies in the anaesthetised rat. Brain Res 982:108–118

    Article  CAS  Google Scholar 

  10. Diaz-Casares A, Lopez-Gonzalez MV, Peinado-Aragones CA, Gonzalez-Baron S, Dawid-Milner MS (2012) Parabrachial complex glutamate receptors modulate the cardiorespiratory response evoked from hypothalamic defense area. Auton Neurosci 169:124–134

    Article  CAS  Google Scholar 

  11. Diaz-Casares A, Lopez-Gonzalez MV, Dawid-Milner MS (2014) Brainstem metabotropic glutamate receptors and regulation of autonomic responses. In: Foster Olive (ed) Metabotropic glutamate receptors, 1st edn. Nova Science Publisher, New York, pp 1–22

  12. Dutschmann M, Herbert H (1998) NMDA and GABAA receptors in the rat Kolliker-fuse area control cardiorespiratory responses evoked by trigeminal ethmoidal nerve stimulation. J Physiol 510:793–804

    Article  CAS  Google Scholar 

  13. Goodchild AK, Phillips JK, Lipski J, Pilowsky PM (2001) Differential expression of catecholamine synthetic enzymes in the caudal ventral pons. J Comp Neurol 438(4):457–467

    Article  CAS  Google Scholar 

  14. Guthmann A, Herbert H (1999) Expression of N-methyl-D-aspartate receptor subunits in the rat parabrachial and Kölliker-fuse nuclei and in selected pontomedullary brainstem nuclei. J Comp Neurol 415(4):501–517

    Article  CAS  Google Scholar 

  15. Guyenet PG, Koshiya N, Huangfu D, Verberne AJ, Riley TA (1993) Central respiratory control of A5 and A6 pontine noradrenergic neurons. Am J Phys 264:1035–1044

    Google Scholar 

  16. Guyenet PG (2006) The sympathetic control of blood pressure. Nat Rev Neurosci 7:335–346

    Article  CAS  Google Scholar 

  17. Guyenet PG, Stornetta RL, Bayliss DA (2010) Central respiratory chemoreception. J Comp Neurol 518(19):3883–3906

    Article  CAS  Google Scholar 

  18. Hilaire G, Viemari JC, Coulon P, Simonneau M, Bevengut M (2004) Modulation of the respiratory rhythm generator by the pontine noradrenergic A5 and A6 groups in rodents. Respir Physiol Neurobiol 143:187–197

    Article  CAS  Google Scholar 

  19. Hilaire G (2006) Endogenous noradrenaline affects the maturation and function of the respiratory network: possible implication for SIDS. Auton Neurosci 126-127:320–331

    Article  CAS  Google Scholar 

  20. Horiuchi J, McDowall LM, Dampney RA (2006) Differential control of cardiac and sympathetic vasomotor activity from the dorsomedial hypothalamus. Clin Exp Pharmacol Physiol 33(12):1265–1268

    Article  CAS  Google Scholar 

  21. Huangfu DH, Koshiya N, Guyenet PG (1991) A5 noradrenergic unit activity and sympathetic nerve discharge in rats. Am J Phys 261:393–402

    Article  Google Scholar 

  22. Jordan D, Mifflin SW, Spyer KM (1988) Hypothalamic inhibition of neurones in the nucleus tractus solitarius of the cat is GABA mediated. J Physiol 399:389–404

    Article  CAS  Google Scholar 

  23. Kanbar R, Depuy SD, West GH, Stornetta RL, Guyenet PG (2011) Regulation of visceral sympathetic tone by A5 noradrenergic neurons in rodents. J Physiol 589:903–917

    Article  CAS  Google Scholar 

  24. Koshiya N, Guyenet PG (1994) A5 noradrenergic neurons and the carotid sympathetic chemoreflex. Am J Phys 267:519–526

    Google Scholar 

  25. Loewy AD, Gregorie EM, McKellar S, Baker RP (1979a) Electrophysiological evidence that the A5 catecholamine cell group is a vasomotor center. Brain Res 178:196–200

    Article  CAS  Google Scholar 

  26. Loewy AD, McKellar S, Saper CB (1979b) Direct projections from the A5 catecholamine cell group to the intermediolateral cell column. Brain Res 174:309–314

    Article  CAS  Google Scholar 

  27. Loewy AD (1991) Forebrain nuclei involved in autonomic control. Prog Brain Res 87:253–268

    Article  CAS  Google Scholar 

  28. López-González MV, Díaz-Casares A, Peinado-Aragonés CA, Lara JP, Barbancho MA, Dawid-Milner MS (2013) Neurons of the A5 region are required for the tachycardia evoked by electrical stimulation of the hypothalamic defence area in anaesthetized rats. Exp Physiol 98(8):1279–1294

    Article  Google Scholar 

  29. McDowall LM, Horiuchi J, Killinger S, Dampney RA (2006) Modulation of the baroreceptor reflex by the dorsomedial hypothalamic nucleus and perifornical area. Am J Physiol Regul Integr Comp Physiol 290(4):1020–1026

    Article  Google Scholar 

  30. Papp RS, Palkovits M (2014) Brainstem projections of neurons located in various subdivisions of the dorsolateral hypothalamic area-an anterograde tract-tracing study. Front Neuroanat 8(34):1–16

    Google Scholar 

  31. Paton JFR, Spyer KM (2013) Central nervous control of cardiovascular system. In: Mathias C, Bannister R (eds) Autonomic failure. A textbook of clinical disorders of the autonomic nervous system, 5th edn. Oxford University Press, UK, pp 35–51

  32. Rosin DL, Chang DA, Guyenet PG (2006) Afferent and efferent connections of the rat retrotrapezoid nucleus. J Comp Neurol 499:64–89

    Article  Google Scholar 

  33. Schlenker EH, Prestbo A (2003) Elimination of the post-hypoxic frequency decline in conscious rats lesioned in pontine A5 region. Respir Physiol Neurobiol 138:179–191

    Article  Google Scholar 

  34. Shigemoto R, Mizuno N (2000) Metabotropic glutamate receptors immunocytochemicaland in situ hybridization analyses. Handb Chem Neuroanat 18:63–98

    Article  CAS  Google Scholar 

  35. Silva-Carvalho L, Dawid-Milner MS, Spyer KM (1995) The pattern of excitatory inputs to the nucleus tractus solitarii evoked on stimulation in the hypothalamic defence area in the cat. J Physiol 487(3):727–737

    Article  CAS  Google Scholar 

  36. Tavares I, Lima D, Coimbra A (1997) The pontine A5 noradrenergic cells which project to the spinal cord dorsal horn are reciprocally connected with the caudal ventrolateral medulla in the rat. Eur J Neurosci 9:2452–2461

    Article  CAS  Google Scholar 

  37. Taxini CL, Takakura AC, Gargaglioni LH, Moreira TS (2011) Control of the central chemoreflex by A5 noradrenergic neurons in rats. Neuroscience 199:177–186

    Article  CAS  Google Scholar 

  38. Taxini CL, Moreira TS, Takakura AC, Bícego KC, Gargaglioni LH, Zoccal DB (2017) Role of A5 noradrenergic neurons in the chemoreflex control of respiratory and sympathetic activities in unanesthetized conditions. Neuroscience 354:146–157

    Article  CAS  Google Scholar 

  39. Wisden W, Seeburg PH, Monyer H (2000) AMPA, kainate and NMDA ionotropic glutamate receptor expression an in situ hybridization atlas. Handb Chem Neuroanat 18:99–143

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by a program grant Junta de Andalucía, Grupo Consolidado no. CTS156, Spain. Part of the final study was supported with a grant from the Own Funds Program of the University of Málaga.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. López-González.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-González, M.V., Díaz-Casares, A., González-García, M. et al. Glutamate receptors of the A5 region modulate cardiovascular responses evoked from the dorsomedial hypothalamic nucleus and perifornical area. J Physiol Biochem 74, 325–334 (2018). https://doi.org/10.1007/s13105-018-0623-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-018-0623-3

Keywords

Navigation