Skip to main content

Advertisement

Log in

The ileal FGF15/19 to hepatic FGFR4 axis regulates liver regeneration after partial hepatectomy in mice

Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Fibroblast growth factor (FGF) has been considered to modulate liver regeneration (LR) after partial hepatectomy (PH) at the tissue level. Previous studies have demonstrated that FGF15 and FGF19 induce the activation of its receptor, FGF receptor 4 (FGFR4), which can promote hepatocellular carcinoma progression and regulate liver lipid metabolism. In this study, we aimed to explore the role of the ileal FGF15/19- hepatic FGFR4 axis in the LR after PH. Male C57BL/6 mice aged 8–12 weeks were partially hepatectomized and assessed for expression of ileal FGF15/19 to hepatic FGFR4 signaling. We used recombinant human FGF19 protein and a small interfering RNA (siRNA) of FGFR4 to regulate expression of the FGF15/19-FGFR4 axis in vitro and in vivo. The proliferation and cell cycle of hepatocytes, the expression levels of FGF15/19-FGFR4 downstream molecules, liver recovery, and lipid metabolism were assessed. We found that both ileal and serum FGF15 expression were upregulated and hepatic FGFR4 was activated after PH in mice. FGF15/19 promoted cell cycle progression, enhanced proliferation, and reduced hepatic lipid accumulation of hepatocytes both in vitro and in vivo. Furthermore, the proliferative effect and lipid regulatory properties of FGF15/19 were dependent on FGFR4 in hepatocytes. In addition, ileal FGF15/19-hepatic FGFR4 transduction during hepatocyte proliferation was regulated by extracellular regulated protein kinase (ERK) 1/2. In conclusion, the ileal FGF15/19 to hepatic FGFR4 axis is activated and promotes LR after PH in mice, supporting the potential of ileal FGF15/19 to hepatic FGFR4 axis-targeted therapy to enhance LR after PH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Akita K, Okuno M, Enya M, Imai S, Moriwaki H, Kawada N, Suzuki Y, Kojima S (2002) Impaired liver regeneration in mice by lipopolysaccharide via TNF-alpha/kallikrein-mediated activation of latent TGF-beta. Gastroenterology 123(1):352–364. https://doi.org/10.1053/gast.2002.34234

    Article  CAS  PubMed  Google Scholar 

  2. Alvarez-Sola G, Uriarte I, Latasa MU, Fernandez-Barrena MG, Urtasun R, Elizalde M, Barcena-Varela M, Jimenez M, Chang HC, Barbero R, Catalan V, Rodriguez A, Fruhbeck G, Gallego-Escuredo JM, Gavalda-Navarro A, Villarroya F, Rodriguez-Ortigosa CM, Corrales FJ, Prieto J, Berraondo P, Berasain C, Avila MA (2017) Fibroblast growth factor 15/19 (FGF15/19) protects from diet-induced hepatic steatosis: development of an FGF19-based chimeric molecule to promote fatty liver regeneration. Gut 66(10):1818–1828. https://doi.org/10.1136/gutjnl-2016-312975

    Article  CAS  PubMed  Google Scholar 

  3. Beenken A, Mohammadi M (2009) The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov 8(3):235–253. https://doi.org/10.1038/nrd2792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Berger J, Moller DE (2002) The mechanisms of action of PPARs. Annu Rev Med 53(1):409–435. https://doi.org/10.1146/annurev.med.53.082901.104018

    Article  CAS  PubMed  Google Scholar 

  5. Bonen A, Campbell SE, Benton CR, Chabowski A, Coort SLM, Han XX, Koonen DPY (2004) Regulation of fatty acid transport by fatty acid translocase/CD36. Proc Nutr Soc 63(02):245–249. https://doi.org/10.1079/PNS2004331

    Article  CAS  PubMed  Google Scholar 

  6. Brooks AN, Kilgour E, Smith PD (2012) Molecular pathways: fibroblast growth factor signaling: a new therapeutic opportunity in cancer. Clin Cancer Res 18(7):1855–1862. https://doi.org/10.1158/1078-0432.ccr-11-0699

    Article  CAS  PubMed  Google Scholar 

  7. Chen Q, Jiang Y, An Y, Zhao N, Zhao Y, Yu C (2011) Soluble FGFR4 extracellular domain inhibits FGF19-induced activation of FGFR4 signaling and prevents nonalcoholic fatty liver disease. Biochem Biophys Res Commun 409(4):651–656. https://doi.org/10.1016/j.bbrc.2011.05.059

    Article  CAS  PubMed  Google Scholar 

  8. Choi M, Moschetta A, Bookout AL, Peng L, Umetani M, Holmstrom SR, Suino-Powell K, Xu HE, Richardson JA, Gerard RD, Mangelsdorf DJ, Kliewer SA (2006) Identification of a hormonal basis for gallbladder filling. Nat Med 12(11):1253–1255. https://doi.org/10.1038/nm1501

    Article  CAS  PubMed  Google Scholar 

  9. Ezzat S, Huang P, Dackiw A, Asa SL (2005) Dual inhibition of RET and FGFR4 restrains medullary thyroid cancer cell growth. Clin Cancer Res 11(3):1336–1341

    CAS  PubMed  Google Scholar 

  10. Fausto N, Campbell JS, Riehle KJ (2006) Liver regeneration. Hepatology 43(S1):S45–S53. https://doi.org/10.1002/hep.20969

    Article  CAS  PubMed  Google Scholar 

  11. Fausto N, Campbell JS, Riehle KJ (2012) Liver regeneration. J Hepatol 57(3):692–694. https://doi.org/10.1016/j.jhep.2012.04.016

    Article  PubMed  Google Scholar 

  12. Fu L, John LM, Adams SH, Yu XX, Tomlinson E, Renz M, Williams PM, Soriano R, Corpuz R, Moffat B, Vandlen R, Simmons L, Foster J, Stephan JP, Tsai SP, Stewart TA (2004) Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes. Endocrinology 145(6):2594–2603. https://doi.org/10.1210/en.2003-1671

    Article  CAS  PubMed  Google Scholar 

  13. Gauglhofer C, Sagmeister S, Schrottmaier W, Fischer C, Rodgarkia-Dara C, Mohr T, Stattner S, Bichler C, Kandioler D, Wrba F, Schulte-Hermann R, Holzmann K, Grusch M, Marian B, Berger W, Grasl-Kraupp B (2011) Up-regulation of the fibroblast growth factor 8 subfamily in human hepatocellular carcinoma for cell survival and neoangiogenesis. Hepatology 53(3):854–864. https://doi.org/10.1002/hep.24099

    Article  CAS  PubMed  Google Scholar 

  14. Geier A, Trautwein C (2007) Bile acids are “homeotrophic” sensors of the functional hepatic capacity and regulate adaptive growth during liver regeneration. Hepatology 45(1):251–253. https://doi.org/10.1002/hep.21521

    Article  PubMed  Google Scholar 

  15. Holt JA, Luo G, Billin AN, Bisi J, McNeill YY, Kozarsky KF, Donahee M, Wang DY, Mansfield TA, Kliewer SA, Goodwin B, Jones SA (2003) Definition of a novel growth factor-dependent signal cascade for the suppression of bile acid biosynthesis. Genes Dev 17(13):1581–1591. https://doi.org/10.1101/gad.1083503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huang W, Ma K, Zhang J, Qatanani M, Cuvillier J, Liu J, Dong B, Huang X, Moore DD (2006) Nuclear receptor-dependent bile acid signaling is required for normal liver regeneration. Science 312(5771):233–236. https://doi.org/10.1126/science.1121435

    Article  CAS  PubMed  Google Scholar 

  17. Huang X, Yang C, Luo Y, Jin C, Wang F, Mckeehan WL (2007) FGFR4 prevents hyperlipidemia and insulin resistance but underlies high-fat diet induced fatty liver. Diabetes 56(10):2501–2510. https://doi.org/10.2337/db07-0648

    Article  CAS  PubMed  Google Scholar 

  18. Inagaki T, Choi M, Moschetta A, Peng L, Cummins CL, McDonald JG, Luo G, Jones SA, Goodwin B, Richardson JA, Gerard RD, Repa JJ, Mangelsdorf DJ, Kliewer SA (2005) Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab 2(4):217–225. https://doi.org/10.1016/j.cmet.2005.09.001

    Article  CAS  PubMed  Google Scholar 

  19. Karp SJ (2009) Clinical implications of advances in the basic science of liver repair and regeneration. Am J Transplant 9(9):1973–1980. https://doi.org/10.1111/j.1600-6143.2009.02731.x

    Article  CAS  PubMed  Google Scholar 

  20. Kir S, Beddow SA, Samuel VT, Miller P, Previs SF, Suino-Powell K, Xu HE, Shulman GI, Kliewer SA, Mangelsdorf DJ (2011) FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis. Science 331(6024):1621–1624. https://doi.org/10.1126/science.1198363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kong B, Huang J, Zhu Y, Li G, Williams J, Shen S, Aleksunes LM, Richardson JR, Apte U, Rudnick DA, Guo GL (2014) Fibroblast growth factor 15 deficiency impairs liver regeneration in mice. Am J Physiol Gastrointest Liver Physiol 306(10):G893–G902. https://doi.org/10.1152/ajpgi.00337.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Latasa MU, Salis F, Urtasun R, Garcia-Irigoyen O, Elizalde M, Uriarte I, Santamaria M, Feo F, Pascale RM, Prieto J, Berasain C, Avila MA (2012) Regulation of amphiregulin gene expression by beta-catenin signaling in human hepatocellular carcinoma cells: a novel crosstalk between FGF19 and the EGFR system. PLoS One 7(12):e52711. https://doi.org/10.1371/journal.pone.0052711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li WC, Ralphs KL, Tosh D (2010) Isolation and culture of adult mouse hepatocytes. Methods Mol Biol 633:185–196. https://doi.org/10.1007/978-1-59745-019-5_13

    Article  CAS  PubMed  Google Scholar 

  24. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  25. Meng Z, Liu N, Fu X, Wang X, Wang YD, Chen WD, Zhang L, Forman BM, Huang W (2011) Insufficient bile acid signaling impairs liver repair in CYP27(−/−) mice. J Hepatol 55(4):885–895. https://doi.org/10.1016/j.jhep.2010.12.037

    Article  CAS  PubMed  Google Scholar 

  26. Michalopoulos GK (2010) Liver regeneration after partial hepatectomy: critical analysis of mechanistic dilemmas. Am J Pathol 176(1):2–13. https://doi.org/10.2353/ajpath.2010.090675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mitchell C, Willenbring H (2008) A reproducible and well-tolerated method for 2/3 partial hepatectomy in mice. Nat Protoc 3(7):1167–1170. https://doi.org/10.1038/nprot.2008.80

    Article  CAS  PubMed  Google Scholar 

  28. Nicholes K, Guillet S, Tomlinson E, Hillan K, Wright B, Frantz GD, Pham TA, Dillard-Telm L, Tsai SP, Stephan JP, Stinson J, Stewart T, French DM (2002) A mouse model of hepatocellular carcinoma: ectopic expression of fibroblast growth factor 19 in skeletal muscle of transgenic mice. Am J Pathol 160(6):2295–2307. https://doi.org/10.1016/s0002-9440(10)61177-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Padrissa-Altes S, Bachofner M, Bogorad RL, Pohlmeier L, Rossolini T, Bohm F, Liebisch G, Hellerbrand C, Koteliansky V, Speicher T, Werner S (2015) Control of hepatocyte proliferation and survival by Fgf receptors is essential for liver regeneration in mice. Gut 64(9):1444–1453. https://doi.org/10.1136/gutjnl-2014-307874

    Article  CAS  PubMed  Google Scholar 

  30. Roidl A, Berger HJ, Kumar S, Bange J, Knyazev P, Ullrich A (2009) Resistance to chemotherapy is associated with fibroblast growth factor receptor 4 up-regulation. Clin Cancer Res 15(6):2058–2066. https://doi.org/10.1158/1078-0432.CCR-08-0890

    Article  CAS  PubMed  Google Scholar 

  31. Rudnick DA, Davidson NO (2012) Functional relationships between lipid metabolism and liver regeneration. Int J Hepatol 2012:549241–549241. https://doi.org/10.1155/2012/549241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Satyanarayana A, Geffers R, Manns MP, Buer J, Rudolph KL (2004) Gene expression profile at the G1/S transition of liver regeneration after partial hepatectomy in mice. Cell Cycle 3(11):1405–1417. https://doi.org/10.4161/cc.3.11.1212

    Article  CAS  PubMed  Google Scholar 

  33. Sawey ET, Chanrion M, Cai C, Wu G, Zhang J, Zender L, Zhao A, Busuttil RW, Yee H, Stein L, DM F, RS F, SW L SP (2011) Identification of a therapeutic strategy targeting amplified FGF19 in liver cancer by oncogenomic screening. Cancer Cell 19(3):347–358. https://doi.org/10.1016/j.ccr.2011.01.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shin DJ, Osborne TF (2009) FGF15/FGFR4 integrates growth factor signaling with hepatic bile acid metabolism and insulin action. J Biol Chem 284(17):11110–11120. https://doi.org/10.1074/jbc.M808747200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Simmons Kovacs LA, Orlando DA, Haase SB (2008) Transcription networks and cyclin/CDKs: the yin and yang of cell cycle oscillators. Cell Cycle 7(17):2626–2629. https://doi.org/10.4161/cc.7.17.6515

    Article  PubMed  Google Scholar 

  36. Skov OP, Boesby S, Kirkegaard P, Therkelsen K, Almdal T, Poulsen SS, Nexø E (1988) Influence of epidermal growth factor on liver regeneration after partial hepatectomy in rats. Hepatology 8:992–996

    Article  Google Scholar 

  37. Song E, Lee SK, Wang J, Ince N, Ouyang N, Min J, Chen J, Shankar P, Lieberman J (2003) RNA interference targeting Fas protects mice from fulminant hepatitis. Nat Med 9(3):347–351. https://doi.org/10.1038/nm828

    Article  CAS  PubMed  Google Scholar 

  38. Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M, Elbashir S, Geick A, Hadwiger P, Harborth J, John M, Kesavan V, Lavine G, Pandey RK, Racie T, Rajeev KG, Rohl I, Toudjarska I, Wang G, Wuschko S, Bumcrot D, Koteliansky V, Limmer S, Manoharan M, Vornlocher HP (2004) Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432(7014):173–178. https://doi.org/10.1038/nature03121

    Article  PubMed  Google Scholar 

  39. Tomiyama K, Maeda R, Urakawa I, Yamazaki Y, Tanaka T, Ito S, Nabeshima Y, Tomita T, Odori S, Hosoda K (2010) Relevant use of klotho in FGF19 subfamily signaling system in vivo. Proc Natl Acad Sci U S A 107(4):1666–1671. https://doi.org/10.1073/pnas.0913986107

    Article  PubMed  PubMed Central  Google Scholar 

  40. Turner N, Grose R (2010) Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer 10(2):116–129. https://doi.org/10.1038/nrc2780

    Article  CAS  PubMed  Google Scholar 

  41. Uriarte I, Fernandez-Barrena MG, Monte MJ, Latasa MU, Chang HC, Carotti S, Vespasiani-Gentilucci U, Morini S, Vicente E, Concepcion AR, Medina JF, Marin JJ, Berasain C, Prieto J, Avila MA (2013) Identification of fibroblast growth factor 15 as a novel mediator of liver regeneration and its application in the prevention of post-resection liver failure in mice. Gut 62(6):899–910. https://doi.org/10.1136/gutjnl-2012-302945

    Article  CAS  PubMed  Google Scholar 

  42. Uriarte I, Latasa MU, Carotti S, Fernandez-Barrena MG, Garcia-Irigoyen O, Elizalde M, Urtasun R, Vespasiani-Gentilucci U, Morini S, de Mingo A, Mari M, Corrales FJ, Prieto J, Berasain C, Avila MA (2015) Ileal FGF15 contributes to fibrosis-associated hepatocellular carcinoma development. Int J Cancer 136(10):2469–2475. https://doi.org/10.1002/ijc.29287

    Article  CAS  PubMed  Google Scholar 

  43. Vergnes L, Lee JM, Chin RG, Auwerx J, Reue K (2013) Diet1 functions in the FGF15/19 enterohepatic signaling axis to modulate bile acid and lipid levels. Cell Metab 17(6):916–928. https://doi.org/10.1016/j.cmet.2013.04.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Veteläinen R, van Vliet AK, van Gulik TM (2007) Severe steatosis increases hepatocellular injury and impairs liver regeneration in a rat model of partial hepatectomy. Ann Surg 245(1):44–50. https://doi.org/10.1097/01.sla.0000225253.84501.0e

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wang J, Stockton DW, Ittmann M (2004) The fibroblast growth factor receptor-4 Arg388 allele is associated with prostate cancer initiation and progression. Clin Cancer Res 10(18):6169–6178. https://doi.org/10.1158/1078-0432.CCR-04-0408

    Article  CAS  PubMed  Google Scholar 

  46. Wu X, Li Y (2009) Role of FGF19 induced FGFR4 activation in the regulation of glucose homeostasis. Aging 1(12):1023–1027. https://doi.org/10.18632/aging.100108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yamauchia H, Okada T, Nakayama H, Doi K (2003) Impaired liver regeneration after partial hepatectomy in db/db mice. Exp Toxicol Pathol 54(4):281–286. https://doi.org/10.1078/0940-2993-00265

    Article  Google Scholar 

  48. Yu C, Wang F, Kan M, Jin C, Jones RB, Weinstein M, Deng CX, Mckeehan WL (2000) Elevated cholesterol metabolism and bile acid synthesis in mice lacking membrane tyrosine kinase receptor FGFR4. J Biol Chem 275(20):15482–15489. https://doi.org/10.1074/jbc.275.20.15482

    Article  CAS  PubMed  Google Scholar 

  49. Yu C, Wang F, Jin C, Wu X, Chan WK, Mckeehan WL (2003) Increased carbon tetrachloride-induced liver injury and fibrosis in FGFR4-deficient mice. Am J Pathol 161:2003–2010

    Article  Google Scholar 

  50. Yu S, Matsusue K, Kashireddy P, Cao WQ, Yeldandi V, Yeldandi AV, Rao MS, Gonzalez FJ, Reddy JK (2003) Adipocyte-specific gene expression and adipogenic steatosis in the mouse liver due to peroxisome proliferator-activated receptor gamma1 (PPARgamma1) overexpression. J Biol Chem 278(1):498–505. https://doi.org/10.1074/jbc.M210062200

    Article  CAS  PubMed  Google Scholar 

  51. Zhang L, Wang YD, Chen WD, Wang X, Lou G, Liu N, Lin M, Forman BM, Huang W (2012) Promotion of liver regeneration/repair by farnesoid X receptor in both liver and intestine in mice. Hepatology 56(6):2336–2343. https://doi.org/10.1002/hep.25905

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Science and Technology Planning Project of Guangdong Province (2013B051000020, 2013B040200019, and 2014A030304017), the Science and Technology Planning Project of Guangzhou (2014Y2–00114), the National High Technology Research and Development Program of China (863 Program) (2012AA021007 and 2012AA021008), the National Natural Science Foundation of China (81373156 and 81471583), the Special Fund for Science Research by Ministry of Health (201002004 and 201302009), the Key Clinical Specialty Construction Project of National Health and Family Planning Commission of the People’s Republic of China, the Science and Technology Planning Key Clinical Project of Guangdong Province (2011A030400005), and the Guangdong Provincial Key Laboratory Construction Projection on Organ Donation and Transplant Immunology (2013A061401007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiyong Guo, Xiaofeng Zhu or Xiaoshun He.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Zhao, Q., Zhang, C. et al. The ileal FGF15/19 to hepatic FGFR4 axis regulates liver regeneration after partial hepatectomy in mice. J Physiol Biochem 74, 247–260 (2018). https://doi.org/10.1007/s13105-018-0610-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-018-0610-8

Keywords

Navigation