Skip to main content

Advertisement

Log in

Gene methylation parallelisms between peripheral blood cells and oral mucosa samples in relation to overweight

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

An Erratum to this article was published on 05 October 2017

This article has been updated

Abstract

Epigenetics has an important role in the regulation of metabolic adaptation to environmental modifications. In this sense, the determination of epigenetic changes in non-invasive samples during the development of metabolic diseases could play an important role in the procedures in primary healthcare practice. To help translate the knowledge of epigenetics to public health practice, the present study aims to explore the parallelism of methylation levels between white blood cells and buccal samples in relation to obesity and associated disorders. Blood and buccal swap samples were collected from a subsample of the Spanish cohort of the Food4Me study. Infinium HumanMethylation450 DNA Analysis was carried out for the determination of methylation levels. Standard deviation for β values method and concordance correlation analysis were used to select those CpG which showed best parallelism between samples. A total of 277 CpGs met the criteria and were selected for an enrichment analysis and a correlation analysis with anthropometrical and clinical parameters. From those selected CpGs, four presented high associations with BMI (cg01055691 in GAP43; r = −0.92 and rho = −0.84 for blood; r = −0.89 and rho = −0.83 for buccal sample), HOMA-IR (cg00095677 in ATP2A3; r = 0.82 and rho = −0.84 for blood; r = −0.8 and rho = −0.83 for buccal sample) and leptin (cg14464133 in ADARB2; r = −0.9182 and rho = −0.94 for blood; r = −0.893 and rho = −0.79 for buccal sample). These findings demonstrate the potential application of non-invasive buccal samples in the identification of surrogate epigenetic biomarkers and identify methylation sites in GAP43, ATP2A3 and ADARB2 genes as potential targets in relation to overweight management and insulin sensibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

  • 05 October 2017

    Volume 73 issue 3 was published with an incorrect cover date. Correct is August 2017. The Publisher apologizes for this mistake and all related inconveniences caused by this.

References

  1. Agha G, Houseman EA, Kelsey KT, Eaton CB, Buka SL, Loucks EB (2015) Adiposity is associated with DNA methylation profile in adipose tissue. Int J Epidemiol 44(4):1277–1287

    Article  PubMed  Google Scholar 

  2. Aslibekyan S, Demerath EW, Mendelson M, Zhi D, Guan W, Liang L et al (2015) Epigenome-wide study identifies novel methylation loci associated with body mass index and waist circumference. Obesity (Silver Spring) 23(7):1493–1501

    Article  CAS  Google Scholar 

  3. Barres R, Kirchner H, Rasmussen M, Yan J, Kantor FR, Krook A et al (2013) Weight loss after gastric bypass surgery in human obesity remodels promoter methylation. Cell Rep 3(4):1020–1027

    Article  CAS  PubMed  Google Scholar 

  4. Bekar E, Altunkaynak BZ, Balci K, Aslan G, Ayyildiz M, Kaplan S (2014) Effects of high fat diet induced obesity on peripheral nerve regeneration and levels of GAP 43 and TGF-beta in rats. Biotechnic & histochemistry : official publication of the Biological Stain Commission 89(6):446–456

    Article  CAS  Google Scholar 

  5. Burdge GC, Lillycrop KA (2010) Bridging the gap between epigenetics research and nutritional public health interventions. Genome medicine. 2(11):80

    Article  PubMed  PubMed Central  Google Scholar 

  6. Burdge GC, Lillycrop KA (2014) Environment-physiology, diet quality and energy balance: the influence of early life nutrition on future energy balance. Physiol Behav 134:119–122

    Article  CAS  PubMed  Google Scholar 

  7. Burdge GC, Hoile SP, Lillycrop KA (2012) Epigenetics: are there implications for personalised nutrition? Current opinion in clinical nutrition and metabolic care. 15(5):442–447

    Article  CAS  PubMed  Google Scholar 

  8. Campion J, Milagro FI, Goyenechea E, Martinez JA (2009) TNF-alpha promoter methylation as a predictive biomarker for weight-loss response. Obesity (Silver Spring) 17(6):1293–1297

    CAS  Google Scholar 

  9. Campion J, Milagro FI, Martinez JA (2009) Individuality and epigenetics in obesity. Obesity reviews: an official journal of the International Association for the Study of Obesity 10(4):383–392

    Article  CAS  Google Scholar 

  10. Celis-Morales C, Livingstone KM, Marsaux CF, Forster H, O'Donovan CB, Woolhead C et al (2015) Design and baseline characteristics of the Food4Me study: a web-based randomised controlled trial of personalised nutrition in seven European countries. Genes Nutr 10(1):450

    Article  PubMed  Google Scholar 

  11. Chaabane C, Corvazier E, Bredoux R, Dally S, Raies A, Villemain A et al (2006) Sarco/endoplasmic reticulum Ca2+ATPase type 3 isoforms (SERCA3b and SERCA3f): distinct roles in cell adhesion and ER stress. Biochem Biophys Res Commun 345(4):1377–1385

    Article  CAS  PubMed  Google Scholar 

  12. Choi SW, Claycombe KJ, Martinez JA, Friso S, Schalinske KL (2013) Nutritional epigenomics: a portal to disease prevention. Adv Nutr 4(5):530–532

    Article  PubMed  PubMed Central  Google Scholar 

  13. Collaboration NRF (2016) Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet 387(10026):1377–1396

    Article  Google Scholar 

  14. Cordero P, Campion J, Milagro FI, Goyenechea E, Steemburgo T, Javierre BM et al (2011) Leptin and TNF-alpha promoter methylation levels measured by MSP could predict the response to a low-calorie diet. J Physiol Biochem 67(3):463–470

    Article  CAS  PubMed  Google Scholar 

  15. Dick KJ, Nelson CP, Tsaprouni L, Sandling JK, Aissi D, Wahl S et al (2014) DNA methylation and body-mass index: a genome-wide analysis. Lancet 383(9933):1990–1998

    Article  CAS  PubMed  Google Scholar 

  16. Drummond EM, Gibney ER (2013) Epigenetic regulation in obesity. Current opinion in clinical nutrition and metabolic care 16(4):392–397

    CAS  PubMed  Google Scholar 

  17. Feinberg AP, Irizarry RA, Fradin D, Aryee MJ, Murakami P, Aspelund T et al (2010) Personalized epigenomic signatures that are stable over time and covary with body mass index. Sci Transl Med 2(49):49ra67

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fisher HL, Murphy TM, Arseneault L, Caspi A, Moffitt TE, Viana J et al (2015) Methylomic analysis of monozygotic twins discordant for childhood psychotic symptoms. Epigenetics. 10(11):1014–1023

    Article  PubMed  PubMed Central  Google Scholar 

  19. Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18(6):499–502

    CAS  PubMed  Google Scholar 

  20. Gemma C, Sookoian S, Dieuzeide G, Garcia SI, Gianotti TF, Gonzalez CD et al (2010) Methylation of TFAM gene promoter in peripheral white blood cells is associated with insulin resistance in adolescents. Mol Genet Metab 100(1):83–87

    Article  CAS  PubMed  Google Scholar 

  21. Gentleman R, Carey V, Huber W, Irizarry R, Dudoit S (2006) Bioinformatics and computational biology solutions using R and bioconductor. Springer, New York

    Google Scholar 

  22. Gillberg L, Perfilyev A, Brons C, Thomasen M, Grunnet LG, Volkov P et al (2016) Adipose tissue transcriptomics and epigenomics in low birthweight men and controls: role of high-fat overfeeding. Diabetologia 59(4):799–812

    Article  CAS  PubMed  Google Scholar 

  23. Guenard F, Tchernof A, Deshaies Y, Perusse L, Biron S, Lescelleur O et al (2014) Differential methylation in visceral adipose tissue of obese men discordant for metabolic disturbances. Physiol Genomics 46(6):216–222

    Article  PubMed  Google Scholar 

  24. Huang YT, Chu S, Loucks EB, Lin CL, Eaton CB, Buka SL et al (2016) Epigenome-wide profiling of DNA methylation in paired samples of adipose tissue and blood. Epigenetics. 11(3):227–236

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jiang R, Jones MJ, Chen E, Neumann SM, Fraser HB, Miller GE et al (2015) Discordance of DNA methylation variance between two accessible human tissues. Scientific reports 5:8257

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lin LI (1989) A concordance correlation coefficient to evaluate reproducibility. Biometrics 45(1):255–268

    Article  CAS  PubMed  Google Scholar 

  27. Lowe R, Gemma C, Beyan H, Hawa MI, Bazeos A, Leslie RD et al (2013) Buccals are likely to be a more informative surrogate tissue than blood for epigenome-wide association studies. Epigenetics. 8(4):445–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Marzi SJ, Meaburn EL, Dempster EL, Lunnon K, Paya-Cano JL, Smith RG et al (2016) Tissue-specific patterns of allelically-skewed DNA methylation. Epigenetics 11(1):24–35

    Article  PubMed  PubMed Central  Google Scholar 

  29. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28(7):412–419

    Article  CAS  PubMed  Google Scholar 

  30. McDermott E, Ryan EJ, Tosetto M, Gibson D, Burrage J, Keegan D et al (2016) DNA methylation profiling in inflammatory bowel disease provides new insights into disease pathogenesis. Journal of Crohn's & colitis 10(1):77–86

    Article  Google Scholar 

  31. McGregor K, Bernatsky S, Colmegna I, Hudson M, Pastinen T, Labbe A et al (2016) An evaluation of methods correcting for cell-type heterogeneity in DNA methylation studies. Genome Biol 17:84

    Article  PubMed  PubMed Central  Google Scholar 

  32. McKay JA, Xie L, Harris S, Wong YK, Ford D, Mathers JC (2011) Blood as a surrogate marker for tissue-specific DNA methylation and changes due to folate depletion in post-partum female mice. Mol Nutr Food Res 55(7):1026–1035

    Article  CAS  PubMed  Google Scholar 

  33. Milagro FI, Martinez JA (2013) Epigenetics of obesity and weight loss. Endocrinologia y nutricion: organo de la Sociedad Espanola de Endocrinologia y Nutricion 60(Suppl 1):12–14

    Article  Google Scholar 

  34. Milagro FI, Campion J, Cordero P, Goyenechea E, Gomez-Uriz AM, Abete I et al (2011) A dual epigenomic approach for the search of obesity biomarkers: DNA methylation in relation to diet-induced weight loss. FASEB journal: official publication of the Federation of American Societies for Experimental Biology. 25(4):1378–1389

    Article  CAS  Google Scholar 

  35. Milagro FI, Mansego ML, De Miguel C, Martinez JA (2013) Dietary factors, epigenetic modifications and obesity outcomes: progresses and perspectives. Mol Asp Med 34(4):782–812

    Article  CAS  Google Scholar 

  36. Mudry JM, Lassiter DG, Nylen C, Garcia-Calzon S, Naslund E, Krook A, et al (2016) Insulin and glucose alter death-associated protein kinase 3 (DAPK3) DNA methylation in human skeletal muscle. Diabetes

  37. Nielsen CH, Larsen A, Nielsen AL (2016) DNA methylation alterations in response to prenatal exposure of maternal cigarette smoking: a persistent epigenetic impact on health from maternal lifestyle? Arch Toxicol 90(2):231–245

    Article  CAS  PubMed  Google Scholar 

  38. Nilsson E, Jansson PA, Perfilyev A, Volkov P, Pedersen M, Svensson MK et al (2014) Altered DNA methylation and differential expression of genes influencing metabolism and inflammation in adipose tissue from subjects with type 2 diabetes. Diabetes 63(9):2962–2976

    Article  PubMed  Google Scholar 

  39. Nomura K, Eto M, Kojima T, Ogawa S, Iijima K, Nakamura T et al (2010) Visceral fat accumulation and metabolic risk factor clustering in older adults. J Am Geriatr Soc 58(9):1658–1663

    Article  PubMed  Google Scholar 

  40. Oguro R, Kamide K, Katsuya T, Akasaka H, Sugimoto K, Congrains A et al (2012) A single nucleotide polymorphism of the adenosine deaminase, RNA-specific gene is associated with the serum triglyceride level, abdominal circumference, and serum adiponectin concentration. Exp Gerontol 47(2):183–187

    Article  CAS  PubMed  Google Scholar 

  41. Pidsley R, Wong CCY, Volta M, Lunnon K, Mill J, Schalkwyk LC (2013) A data-driven approach to preprocessing Illumina 450K methylation array data. BMC Genomics 14:293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Portales-Casamar E, Lussier AA, Jones MJ, MacIsaac JL, Edgar RD, Mah SM et al (2016) DNA methylation signature of human fetal alcohol spectrum disorder. Epigenetics Chromatin 9:25

    Article  PubMed  PubMed Central  Google Scholar 

  43. Remely M, de la Garza AL, Magnet U, Aumueller E, Haslberger AG (2015) Obesity: epigenetic regulation - recent observations. Biomolecular concepts 6(3):163–175

    Article  CAS  PubMed  Google Scholar 

  44. Ribel-Madsen R, Fraga MF, Jacobsen S, Bork-Jensen J, Lara E, Calvanese V et al (2012) Genome-wide analysis of DNA methylation differences in muscle and fat from monozygotic twins discordant for type 2 diabetes. PLoS One 7(12):e51302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ronn T, Ling C (2013) Effect of exercise on DNA methylation and metabolism in human adipose tissue and skeletal muscle. Epigenomics. 5(6):603–605

    Article  PubMed  Google Scholar 

  46. Sebastiani P, Montano M, Puca A, Solovieff N, Kojima T, Wang MC et al (2009) RNA editing genes associated with extreme old age in humans and with lifespan in C. elegans. PLoS One 4(12):e8210

    Article  PubMed  PubMed Central  Google Scholar 

  47. Stenz L, Zewdie S, Laforge-Escarra T, Prados J, La Harpe R, Dayer A et al (2015) BDNF promoter I methylation correlates between post-mortem human peripheral and brain tissues. Neurosci Res 91:1–7

    Article  CAS  PubMed  Google Scholar 

  48. Swinburn BA, Sacks G, Hall KD, McPherson K, Finegood DT, Moodie ML et al (2011) The global obesity pandemic: shaped by global drivers and local environments. Lancet 378(9793):804–814

    Article  PubMed  Google Scholar 

  49. Talens RP, Boomsma DI, Tobi EW, Kremer D, Jukema JW, Willemsen G et al (2010) Variation, patterns, and temporal stability of DNA methylation: considerations for epigenetic epidemiology. FASEB journal: official publication of the Federation of American Societies for Experimental Biology 24(9):3135–3144

    Article  CAS  Google Scholar 

  50. Touleimat N, Tost J (2012) Complete pipeline for Infinium((R)) Human Methylation 450K BeadChip data processing using subset quantile normalization for accurate DNA methylation estimation. Epigenomics 4(3):325–341

    Article  CAS  PubMed  Google Scholar 

  51. Varadi A, Molnar E, Ostenson CG, Ashcroft SJ (1996) Isoforms of endoplasmic reticulum Ca(2+)-ATPase are differentially expressed in normal and diabetic islets of Langerhans. The Biochemical journal 319(Pt 2):521–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Vo PA, Tomlinson DR (2001) Effects of nerve growth factor on expression of GAP-43 in right atria after sympathectomy in diabetic rats. Diabetes Obes Metab 3(5):350–359

    Article  CAS  PubMed  Google Scholar 

  53. Voisin S, Almen MS, Zheleznyakova GY, Lundberg L, Zarei S, Castillo S et al (2015) Many obesity-associated SNPs strongly associate with DNA methylation changes at proximal promoters and enhancers. Genome medicine 7:103

    Article  PubMed  PubMed Central  Google Scholar 

  54. Volkmar M, Dedeurwaerder S, Cunha DA, Ndlovu MN, Defrance M, Deplus R et al (2012) DNA methylation profiling identifies epigenetic dysregulation in pancreatic islets from type 2 diabetic patients. EMBO J 31(6):1405–1426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wan ES, Qiu W, Carey VJ, Morrow J, Bacherman H, Foreman MG et al (2015) Smoking-associated site-specific differential methylation in buccal mucosa in the COPDGene study. Am J Respir Cell Mol Biol 53(2):246–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang X, Zhu H, Snieder H, Su S, Munn D, Harshfield G et al (2010) Obesity related methylation changes in DNA of peripheral blood leukocytes. BMC Med 8:87

    Article  PubMed  PubMed Central  Google Scholar 

  57. Wang X, Laird PW, Hinoue T, Groshen S, Siegmund KD (2014) Non-specific filtering of beta-distributed data. BMC bioinformatics 15:199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang Y, Zhang XR, Park JL, Kim JH, Zhang L, Ma JL et al (2016) Genome-wide DNA methylation profiles altered by Helicobacter pylori in gastric mucosa and blood leukocyte DNA. Oncotarget 7(24):37132–37144

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Food4Me study is supported by the European Commission under the Food, Agriculture, Fisheries and Biotechnology Theme of the 7th Framework Programme for Research and Technological Development, Grant Number 265494. The authors want to thank all the volunteers who took part in the study, as well as Maria Hernández Ruiz de Eguilaz, Salomé Perez-Diez, Blanca Martínez de Morentin and Veronica Ciaurriz for technical and laboratory support. The research leading to these results has received funding from “la Caixa” Banking Foundation (RS-C scholarship). CIBERobn funds are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo San-Cristobal.

Additional information

An erratum to this article is available at https://doi.org/10.1007/s13105-017-0593-x.

Electronic supplementary material

Supplementary Figure 1

(DOCX 260 kb)

Sup Table 1

(DOCX 65 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

San-Cristobal, R., Navas-Carretero, S., Milagro, F.I. et al. Gene methylation parallelisms between peripheral blood cells and oral mucosa samples in relation to overweight. J Physiol Biochem 73, 465–474 (2016). https://doi.org/10.1007/s13105-017-0560-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-017-0560-6

Keywords

Navigation