Skip to main content
Log in

NHA2 is expressed in distal nephron and regulated by dietary sodium

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Increased renal reabsorption of sodium is a significant risk factor in hypertension. An established clinical marker for essential hypertension is elevated sodium lithium countertransport (SLC) activity. NHA2 is a newly identified Na+(Li+)/H+ antiporter with potential genetic links to hypertension, which has been shown to mediate SLC activity and H+-coupled Na+(Li+) efflux in kidney-derived MDCK cells. To evaluate a putative role in sodium homeostasis, we determined the effect of dietary salt on NHA2. In murine kidney sections, NHA2 localized apically to distal convoluted (both DCT1 and 2) and connecting tubules, partially overlapping in distribution with V-ATPase, AQP2, and NCC1 transporters. Mice fed a diet high in sodium chloride showed elevated transcripts and expression of NHA2 protein. We propose a model in which NHA2 plays a dual role in salt reabsorption or secretion, depending on the coupling ion (sodium or protons). The identified novel regulation of Na+/H+ antiporter in the kidney suggests new roles in salt homeostasis and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DCT:

Distal convoluted tubule

NCC:

Sodium chloride cotransporter

CNT:

Connecting tubule (CNT)

AQP2:

Aquaporin 2

CPA:

Cation proton antiporter

CCD:

Cortical collecting duct

References

  1. Brett CL, Donowitz M, Rao R (2005) Evolutionary origins of eukaryotic sodium/proton exchangers. American journal of physiology Cell physiology 288:C223–C239. doi:10.1152/ajpcell.00360.2004

    Article  CAS  PubMed  Google Scholar 

  2. Calinescu O, Fendler K (2015) A universal mechanism for transport and regulation of CPA sodium proton exchangers. Biol Chem 396:1091–1096. doi:10.1515/hsz-2014-0278

    Article  CAS  PubMed  Google Scholar 

  3. Canessa M (1995) Red cell sodium-lithium countertransport and cardiovascular risk factors in essential hypertension. Trends in cardiovascular medicine 5:102–108. doi:10.1016/1050-1738(95)00004-S

    Article  CAS  PubMed  Google Scholar 

  4. Canessa M, Adragna N, Solomon HS, Connolly TM, Tosteson DC (1980) Increased sodium-lithium countertransport in red cells of patients with essential hypertension. N Engl J Med 302:772–776. doi:10.1056/NEJM198004033021403

    Article  CAS  PubMed  Google Scholar 

  5. Chintapalli VR, Kato A, Henderson L, Hirata T, Woods DJ, Overend G, Davies SA, Romero MF, Dow JA (2015) Transport proteins NHA1 and NHA2 are essential for survival, but have distinct transport modalities. Proc Natl Acad Sci U S A 112:11720–11725. doi:10.1073/pnas.1508031112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cruz DN, Simon DB, Nelson-Williams C, Farhi A, Finberg K, Burleson L, Gill JR, Lifton RP (2001) Mutations in the Na-Cl cotransporter reduce blood pressure in humans. Hypertension 37:1458–1464

    Article  CAS  PubMed  Google Scholar 

  7. de Wardener HE, He FJ, MacGregor GA (2004) Plasma sodium and hypertension. Kidney Int 66:2454–2466. doi:10.1111/j.1523-1755.2004.66018.x

    Article  PubMed  Google Scholar 

  8. Duhm J, Becker BF (1979) Studies on lithium transport across the red cell membrane. V. On the nature of the Na + −dependent Li + countertransport system of mammalian erythrocytes. J Membr Biol 51:263–286

    Article  CAS  PubMed  Google Scholar 

  9. Ecelbarger CA, Tiwari S (2006) Sodium transporters in the distal nephron and disease implications. Curr Hypertens Rep 8:158–165

    Article  CAS  PubMed  Google Scholar 

  10. Ergonul Z, Frindt G, Palmer LG (2006) Regulation of maturation and processing of ENaC subunits in the rat kidney. Am J Physiol Renal Physiol 291:F683–F693. doi:10.1152/ajprenal.00422.2005

    Article  CAS  PubMed  Google Scholar 

  11. Fuster DG, Zhang J, Shi M, Bobulescu IA, Andersson S, Moe OW (2008) Characterization of the sodium/hydrogen exchanger NHA2. J Am Soc Nephrol 19:1547–1556. doi:10.1681/ASN.2007111245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gluck SL, Underhill DM, Iyori M, Holliday LS, Kostrominova TY, Lee BS (1996) Physiology and biochemistry of the kidney vacuolar H + −ATPase. Annu Rev Physiol 58:427–445. doi:10.1146/annurev.ph.58.030196.002235

    Article  CAS  PubMed  Google Scholar 

  13. Kammerer CM, Cox LA, Mahaney MC, Rogers J, Shade RE (2001) Sodium-lithium countertransport activity is linked to chromosome 5 in baboons. Hypertension 37:398–402

    Article  CAS  PubMed  Google Scholar 

  14. Kondapalli KC, Kallay LM, Muszelik M, Rao R (2012) Unconventional chemiosmotic coupling of NHA2, a mammalian Na+/H+ antiporter, to a plasma membrane H+ gradient. J Biol Chem. doi:10.1074/jbc.M112.403550

    PubMed  PubMed Central  Google Scholar 

  15. Lifton RP, Gharavi AG, Geller DS (2001) Molecular mechanisms of human hypertension. Cell 104:545–556

    Article  CAS  PubMed  Google Scholar 

  16. Malnic G, Klose RM, Giebisch G (1964) Micropuncture study of renal potassium excretion in the rat. Am J Phys 206:674–686

    CAS  Google Scholar 

  17. Malnic G, Klose RM, Giebisch G (1966) Microperfusion study of distal tubular potassium and sodium transfer in rat kidney. Am J Phys 211:548–559

    CAS  Google Scholar 

  18. McCormick JA, Yang CL, Ellison DH (2008) WNK kinases and renal sodium transport in health and disease: an integrated view. Hypertension 51:588–596. doi:10.1161/HYPERTENSIONAHA.107.103788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Meneton P, Jeunemaitre X, de Wardener HE, MacGregor GA (2005) Links between dietary salt intake, renal salt handling, blood pressure, and cardiovascular diseases. Physiol Rev 85:679–715. doi:10.1152/physrev.00056.2003

    Article  CAS  PubMed  Google Scholar 

  20. Meneton P, Loffing J, Warnock DG (2004) Sodium and potassium handling by the aldosterone-sensitive distal nephron: the pivotal role of the distal and connecting tubule. Am J Physiol Renal Physiol 287:F593–F601. doi:10.1152/ajprenal.00454.2003

    Article  CAS  PubMed  Google Scholar 

  21. Nijenhuis T, Hoenderop JG, van der Kemp AW, Bindels RJ (2003) Localization and regulation of the epithelial Ca2+ channel TRPV6 in the kidney. J Am Soc Nephrol 14:2731–2740

    Article  CAS  PubMed  Google Scholar 

  22. Nurnberger A, Rabiger M, Mack A, Diaz J, Sokoloff P, Muhlbauer B, Luippold G (2004) Subapical localization of the dopamine D3 receptor in proximal tubules of the rat kidney. The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society 52:1647–1655. doi:10.1369/jhc.4A6359.2004

    Article  Google Scholar 

  23. Reineck HJ, Osgood RW, Ferris TF, Stein JH (1975) Potassium transport in the distal tubule and collecting duct of the rat. Am J Phys 229:1403–1409

    CAS  Google Scholar 

  24. Tamkun MM, Fambrough DM (1986) The (Na+ + K+)-ATPase of chick sensory neurons. Studies on biosynthesis and intracellular transport. J Biol Chem 261:1009–1019

    CAS  PubMed  Google Scholar 

  25. Verlander JW (2007) The thiazide-sensitive NaCl cotransporter: a new target for acute regulation of salt and water transport by angiotensin II. Am J Physiol Renal Physiol 293:F660–F661. doi:10.1152/ajprenal.00260.2007

    Article  CAS  PubMed  Google Scholar 

  26. Wagner CA, Finberg KE, Stehberger PA, Lifton RP, Giebisch GH, Aronson PS, Geibel JP (2002) Regulation of the expression of the Cl−/anion exchanger pendrin in mouse kidney by acid-base status. Kidney Int 62:2109–2117. doi:10.1046/j.1523-1755.2002.00671.x

    Article  CAS  PubMed  Google Scholar 

  27. Wieczorek H, Putzenlechner M, Zeiske W, Klein U (1991) A vacuolar-type proton pump energizes K+/H+ antiport in an animal plasma membrane. J Biol Chem 266:15340–15347

    CAS  PubMed  Google Scholar 

  28. Wilson FH, Disse-Nicodeme S, Choate KA, Ishikawa K, Nelson-Williams C, Desitter I, Gunel M, Milford DV, Lipkin GW, Achard JM, Feely MP, Dussol B, Berland Y, Unwin RJ, Mayan H, Simon DB, Farfel Z, Jeunemaitre X, Lifton RP (2001) Human hypertension caused by mutations in WNK kinases. Science 293:1107–1112. doi:10.1126/science.1062844

    Article  CAS  PubMed  Google Scholar 

  29. Xiang M, Feng M, Muend S, Rao R (2007) A human Na+/H+ antiporter sharing evolutionary origins with bacterial NhaA may be a candidate gene for essential hypertension. Proc Natl Acad Sci U S A 104:18677–18681. doi:10.1073/pnas.0707120104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zerbini G, Mangili R, Gabellini D, Pozza G (1997) Modes of operation of an electroneutral Na+/Li + countertransport in human skin fibroblasts. Am J Phys 272:C1373–C1379

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health R01 DK108304 (to R.R.), DK081610 (J.L.P.), Canadian Institute of Health Research (R.T.A.), and University of Michigan-Dearborn startup funds (KCK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajini Rao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondapalli, K.C., Todd Alexander, R., Pluznick, J.L. et al. NHA2 is expressed in distal nephron and regulated by dietary sodium. J Physiol Biochem 73, 199–205 (2017). https://doi.org/10.1007/s13105-016-0539-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-016-0539-8

Keywords

Navigation