Skip to main content

Advertisement

Log in

Inhibition of IRF3 expression reduces TGF-β1-induced proliferation of hepatic stellate cells

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Therapeutic management of liver fibrosis remains an unresolved clinical problem. Activation of hepatic stellate cell (HSC) is a pivotal event in the progression of liver fibrosis. Recent reports have showed that inhibition of activated HSC proliferation contributes to the reversal of liver fibrosis. Interferon regulatory factor 3 (IRF3), one member of the interferon regulatory factor (IRF) family, is recently proven to be a critical modulator in cardiac fibrosis. And accumulating evidence demonstrated that IRF3 plays a crucial role in liver diseases, such as hepatic steatosis, liver inflammation, and alcoholic liver injury. However, the understanding of the function of IRF3 in liver fibrosis remains limited. Our results identified the role of IRF3 in regulating human HSC (LX-2 cell) cell proliferation and apoptosis. The present study indicated that the expression of IRF3 was significantly increased in HSCs in response to TGF-β1 stimulation. Moreover, a stable and unlimited source of human HSC, the LX-2 cell line, transfected with IRF3-siRNA significantly decreases the expression level of type I collagen (Col1a1) and α-smooth muscle actin (α-SMA) in activated LX-2 cells. On the contrary, overexpression of IRF3 gives rise to an upregulation of Col1a1 and α-SMA in LX-2 cells, and further promoted HSC proliferation. Moreover, the inhibition of IRF3 significantly suppressed TGF-β1-induced HSC proliferation and increased its apoptosis. Of note, the present study indicated IRF3 may regulate LX-2 cell proliferation by via AKT signaling pathway. In summary, these observations suggest IRF3 may function as a novel regulator to modulate TGF-β1-induced LX-2 proliferation, at least in part, via AKT signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig 5
Fig 6
Fig 7
Fig 8

Similar content being viewed by others

Abbreviations

α-SMA:

α-smooth muscle actin

DAPI:

4′,6-diamidino-2-phenylindole

DMEM:

Dulbecco’s Modified Eagle’s Medium

DMSO:

Dimethyl sulfoxide

ECM:

Extracellular matrix

FBS:

Fetal bovine serum

H&E:

Hematoxylin and eosin

HSC:

Hepatic stellate cell

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,4-diphenyl-tetrazolium bromide

IRF3:

Interferon regulatory factor3

PMSF:

Pyrrolidine dithiocarbamate

PVDF:

Polyvinylidene fluoride film

PBS:

Phosphate buffered saline

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

RT-qPCR:

Quantitative real-time PCR

TGF-β1:

Transforming growth factor-β1

References

  1. Bataller R, Brenner DA (2005) Liver fibrosis. J Clin Invest 115(2):209–218. doi:10.1172/JCI24282

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Chen RJ, Wu HH, Wang YJ (2015) Strategies to prevent and reverse liver fibrosis in humans and laboratory animals. Arch Toxicol. doi:10.1007/s00204-015-1525-6

    Google Scholar 

  3. Dong S, Wu C, Hu J, Wang Q, Chen S, Wang Z, Xiong W (2015) Wnt5a promotes cytokines production and cell proliferation in human hepatic stellate cells independent of canonical Wnt pathway. Clin Lab 61(5–6):537–547

    CAS  PubMed  Google Scholar 

  4. Dusabineza AC, Najimi M, van Hul N, Legry V, Khuu DN, van Grunsven LA, Sokal E, Leclercq IA (2015) Hepatic stellate cells improve engraftment of human primary hepatocytes: a pre-clinical transplantation study in animal model. Cell Transplant. doi:10.3727/096368915X686788

    PubMed  Google Scholar 

  5. Elpek GO (2014) Cellular and molecular mechanisms in the pathogenesis of liver fibrosis: an update. World J Gastroenterol WJG 20(23):7260–7276. doi:10.3748/wjg.v20.i23.7260

    Article  PubMed  Google Scholar 

  6. Friedman SL (2008) Hepatic fibrosis—overview. Toxicology 254(3):120–129. doi:10.1016/j.tox.2008.06.013

    Article  CAS  PubMed  Google Scholar 

  7. Fallowfield JA (2011) Therapeutic targets in liver fibrosis. Am J Physiol Gastrointest Liver Physiol 300(5):G709–G715. doi:10.1152/ajpgi.00451.2010

    Article  CAS  PubMed  Google Scholar 

  8. Guo S, Li ZZ, Jiang DS, Lu YY, Liu Y, Gao L, Zhang SM, Lei H, Zhu LH, Zhang XD, Liu DP, Li H (2014) IRF4 is a novel mediator for neuronal survival in ischaemic stroke. Cell Death Differ 21(6):888–903. doi:10.1038/cdd.2014.9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Herrmann J, Gressner AM, Weiskirchen R (2007) Immortal hepatic stellate cell lines: useful tools to study hepatic stellate cell biology and function? J Cell Mol Med 11(4):704–722. doi:10.1111/j.1582-4934.2007.00060.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Hiscott J, Pitha P, Genin P, Nguyen H, Heylbroeck C, Mamane Y, Algarte M, Lin R (1999) Triggering the interferon response: the role of IRF-3 transcription factor. J Interf Cytok Res Offic J Intern Soc Interf Cytok Res 19(1):1–13. doi:10.1089/107999099314360

    Article  CAS  Google Scholar 

  11. Horiuchi M, Yamada H, Akishita M, Ito M, Tamura K, Dzau VJ (1999) Interferon regulatory factors regulate interleukin-1β-converting enzyme expression and apoptosis in vascular smooth muscle cells. Hypertension 33(1):162–166

    Article  CAS  PubMed  Google Scholar 

  12. Hernandez-Gea V, Friedman SL (2011) Pathogenesis of liver fibrosis. Annu Rev Pathol 6:425–456. doi:10.1146/annurev-pathol-011110-130246

    Article  CAS  PubMed  Google Scholar 

  13. Honda K, Taniguchi T (2006) IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nat Rev Immunol 6(9):644–658. doi:10.1038/nri1900

    Article  CAS  PubMed  Google Scholar 

  14. Inagaki Y, Okazaki I (2007) Emerging insights into transforming growth factor β Smad signal in hepatic fibrogenesis. Gut 56(2):284–292. doi:10.1136/gut.2005.088690

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Kang L, Wang Y, Zhang M, Sun R, Lou Y, Wang Y, Li D (2014) Effect of Huazhuojiedu medicated serum on the proliferation and activation of hepatic stellate cells and the expression of PI3K and p-Akt in rats. Int J Clin Experiment Med 7(10):3280–3288

    Google Scholar 

  16. Kanakachari M, Solanke AU, Prabhakaran N, Ahmad I, Dhandapani G, Jayabalan N, Kumar PA (2015) Evaluation of suitable reference genes for normalization of qPCR gene expression studies in Brinjal (Solanum melongena L.) during fruit developmental stages. Appl Biochem Biotechnol. doi:10.1007/s12010-015-1884-8

    PubMed  Google Scholar 

  17. Kisseleva T, Brenner DA (2007) Role of hepatic stellate cells in fibrogenesis and the reversal of fibrosis. J Gastroenterol Hepatol 22(Suppl 1):S73–S78. doi:10.1111/j.1440-1746.2006.04658.x

    Article  CAS  PubMed  Google Scholar 

  18. Karsdal MA, Manon-Jensen T, Genovese F, Kristensen JH, Nielsen MJ, Sand JM, Hansen NU, Bay-Jensen AC, Bager CL, Krag A, Blanchard A, Krarup H, Leeming DJ, Schuppan D (2015) Novel insights into the function and dynamics of extracellular matrix in liver fibrosis. Am J Physiol Gastrointest Liver Physiol 308(10):G807–G830. doi:10.1152/ajpgi.00447.2014

    Article  PubMed  Google Scholar 

  19. Loi P, Yuan Q, Torres D, Delbauve S, Laute MA, Lalmand MC, Petein M, Goriely S, Goldman M, Flamand V (2013) Interferon regulatory factor 3 deficiency leads to interleukin-17-mediated liver ischemia-reperfusion injury. Hepatology 57(1):351–361. doi:10.1002/hep.26022

    Article  CAS  PubMed  Google Scholar 

  20. Liu X, Hu H, Yin JQ (2006) Therapeutic strategies against TGF-β signaling pathway in hepatic fibrosis. Liver Int Offic J Intern Assoc Stud Liver 26(1):8–22. doi:10.1111/j.1478-3231.2005.01192.x

    Article  Google Scholar 

  21. Puche JE, Saiman Y, Friedman SL (2013) Hepatic stellate cells and liver fibrosis. Comprehen Physiol 3(4):1473–1492. doi:10.1002/cphy.c120035

    Article  Google Scholar 

  22. Petrasek J, Dolganiuc A, Csak T, Nath B, Hritz I, Kodys K, Catalano D, Kurt-Jones E, Mandrekar P, Szabo G (2011) Interferon regulatory factor 3 and type I interferons are protective in alcoholic liver injury in mice by way of crosstalk of parenchymal and myeloid cells. Hepatology 53(2):649–660. doi:10.1002/hep.24059

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Qashqari H, Al-Mars A, Chaudhary A, Abuzenadah A, Damanhouri G, Alqahtani M, Mahmoud M, El Sayed ZM, Fatima K, Qadri I (2013) Understanding the molecular mechanism(s) of hepatitis C virus (HCV)-induced interferon resistance. Infect Genet Evol J Molecul Epidemiol Evol Genet Infect Dis 19:113–119. doi:10.1016/j.meegid.2013.06.025

    Article  CAS  Google Scholar 

  24. Savitsky D, Tamura T, Yanai H, Taniguchi T (2010) Regulation of immunity and oncogenesis by the IRF transcription factor family. Cancer Immunol Immunother CII 59(4):489–510. doi:10.1007/s00262-009-0804-6

    Article  CAS  PubMed  Google Scholar 

  25. Son MK, Ryu YL, Jung KH, Lee H, Lee HS, Yan HH, Park HJ, Ryu JK, Suh JK, Hong S, Hong SS (2013) HS-173, a novel PI3K inhibitor, attenuates the activation of hepatic stellate cells in liver fibrosis. Sci Rep 3:3470. doi:10.1038/srep03470

    Article  PubMed Central  PubMed  Google Scholar 

  26. Tarassishin L, Suh HS, Lee SC (2011) Interferon regulatory factor 3 plays an anti-inflammatory role in microglia by activating the PI3K/Akt pathway. J Neuroinflammation 8:187. doi:10.1186/1742-2094-8-187

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Troeger JS, Mederacke I, Gwak GY, Dapito DH, Mu X, Hsu CC, Pradere JP, Friedman RA, Schwabe RF (2012) Deactivation of hepatic stellate cells during liver fibrosis resolution in mice. Gastroenterology 143(4):1073–1083. doi:10.1053/j.gastro.2012.06.036, e1022

    Article  CAS  PubMed  Google Scholar 

  28. Tsushima K, Osawa T, Yanai H, Nakajima A, Takaoka A, Manabe I, Ohba Y, Imai Y, Taniguchi T, Nagai R (2011) IRF3 regulates cardiac fibrosis but not hypertrophy in mice during angiotensin II-induced hypertension. FASEB J Offic Public Federat Am Soc Exp Biol 25(5):1531–1543. doi:10.1096/fj.10-174615

    Article  CAS  Google Scholar 

  29. van der Meer AJ, Sonneveld M, Schouten JN, Janssen HL (2014) [Reversibility of hepatic fibrosis]. Nederlands tijdschrift voor geneeskunde 158:A6790

  30. Wells RG (2005) The role of matrix stiffness in hepatic stellate cell activation and liver fibrosis. J Clin Gastroenterol 39(4 Suppl 2):S158–S161

    Article  CAS  PubMed  Google Scholar 

  31. Ysebrant de Lendonck L, Martinet V, Goriely S (2014) Interferon regulatory factor 3 in adaptive immune responses. Cellul Molecul Life Sci CMLS 71(20):3873–3883. doi:10.1007/s00018-014-1653-9

    Article  CAS  Google Scholar 

  32. Yin C, Evason KJ, Asahina K, Stainier DY (2013) Hepatic stellate cells in liver development, regeneration, and cancer. J Clin Invest 123(5):1902–1910. doi:10.1172/JCI66369

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Zhao GN, Jiang DS, Li H (2015) Interferon regulatory factors: at the crossroads of immunity, metabolism, and disease. Biochim Biophys Acta 1852(2):365–378. doi:10.1016/j.bbadis.2014.04.030

    Article  CAS  PubMed  Google Scholar 

  34. Zhang S, Sun WY, Wu JJ, Wei W (2014) TGF-β signaling pathway as a pharmacological target in liver diseases. Pharmacol Res Offic J Ital Pharmacol Soc 85:15–22. doi:10.1016/j.phrs.2014.05.005

    Google Scholar 

Download references

Acknowledgments

This project was supported by grants from the National Natural Science Foundation of China (81273526, 81473268); Anhui Province Natural Science Foundation of China (1308085MH145); Anhui Science and Technology Research Projects (1301042212); and the Specialized Research Fund for the Doctoral Program of Higher Education (20123420120001)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Li.

Ethics declarations

Written informed consent was provided from all of the patients, and all aspects of this study were approved by Medicine’s Ethics Committee of Anhui Medical University in accordance with the Helsinki Declaration.

Conflicts of interest

The authors declare that they have no competing of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, Mm., Xu, T., Wang, Yr. et al. Inhibition of IRF3 expression reduces TGF-β1-induced proliferation of hepatic stellate cells. J Physiol Biochem 72, 9–23 (2016). https://doi.org/10.1007/s13105-015-0452-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-015-0452-6

Keywords

Navigation