Skip to main content
Log in

Antioxidative effects of extracts from Trifolium species on blood platelets exposed to oxidative stress

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Clovers (Trifolium) may possess a significant therapeutic potential, but the effects of compounds from these plants on blood platelets and haemostasis have been poorly recognized. The present study was designed to evaluate the antioxidative action of extracts from three species of clovers: Trifolium pratense, Trifolium pallidum and Trifolium scabrum in the protection of human blood platelets in vitro. Platelet suspensions were pre-incubated with crude extract and phenolic fraction of T. pratense or phenolic fractions of T. scabrum and T. pallidum, at the final concentrations of 0.5–50 μg/ml. Then, for the induction of oxidative stress, 100 μM peroxynitrite was added. The antioxidative activity of plant extracts was assessed by measurements of the level of 3-nitrotyrosine, thiol groups and lipid peroxidation products (hydroperoxides and thiobarbituric acid-reactive substances). Despite the significant differences in the composition of the investigated extracts, we observed antioxidative effects of all used mixtures. The presence of Trifolium extracts considerably reduced the peroxynitrite-mediated modifications of proteins and diminished peroxidation of lipids in platelets. Our results indicate on a strong antioxidative activity of the tested extracts-statistically significant effects were found even for the lowest concentrations (0.5 μg/ml) of all extracts. This action may be useful in the protection of blood components, very susceptible to oxidative modifications. The obtained results suggest that the examined clovers are a promising source of compounds, valuable for the protection against oxidative stress-induced damage to blood platelets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bartesaghi S, Wenzel J, Trujillo M, Lopez M, Joseph J, Kalyanaraman B, Radi R (2010) Lipid peroxyl radicals mediate tyrosine dimerization and nitration in membranes. Chem Res Toxicol 23:821–835

    Article  PubMed  CAS  Google Scholar 

  2. Bartosz G (1996) Peroxynitrite: mediator of the toxic action of nitric oxide. Acta Biochim Pol 43:645–659

    PubMed  CAS  Google Scholar 

  3. Beck V, Rohr U, Jungbauer A (2005) Phytoestrogens derived from red clover: an alternative to estrogen replacement therapy. J Steroid Biochem Mol Biol 94:499–518

    Article  PubMed  CAS  Google Scholar 

  4. Booth NL, Overk CR, Yao P, Burdette JE, Nikolic D, Chen S-N, Bolton JL, van Breemen RB, Pauli GF, Farnsworth NR (2006) The chemical and biological profile of a red clover (Trifolium pratense) Phase II clinical extract. J Altern Complement Med 12:133–139

    Article  PubMed  Google Scholar 

  5. Calzada C, Vericel E, Lagarde M (1997) Low concentrations of lipid hydroperoxides prime human platelet aggregation specifically via cyclooxygenase activation. Biochem J 325:495–500

    PubMed  CAS  Google Scholar 

  6. de Andrade ML, Ortiz-Ramirez F, Negrao Cavalcanti D, Meneses Ribeiro S, Muricy G, Laneuville Teixeira V, Lopes Fuly A (2011) Evaluation of marine brown algae and sponges from Brazil as anticoagulant and antiplatelet products. Mar Drugs 9:1346–1358

    Article  Google Scholar 

  7. Denicola A, Souza JM, Radi R (1998) Diffusion of peroxynitrite across erythrocyte membranes. PNAS 95:3566–3571

    Article  PubMed  CAS  Google Scholar 

  8. Gay C, Gebicki JM (2000) A critical evaluation of the effect of sorbitol on the ferric-xylenol orange hydroperoxide assay. Anal Biochem 284:217–220

    Article  PubMed  CAS  Google Scholar 

  9. Heijnen CG, Haenen GR, van Acker FA, van der Vijgh WJ, Bast A (2001) Flavonoids as peroxynitrite scavengers: the role of the hydroxyl groups. Toxicol in Vitro 15:3–6

    Article  PubMed  CAS  Google Scholar 

  10. Heijnen CGM, Haenen GRMM, Vekemans JAJM, Bast A (2001) Peroxynitrite scavenging of flavonoids: structure activity relationship. Environmental Toxicol Pharmacol 10:199–206

    Article  CAS  Google Scholar 

  11. Ischiropoulos H (1998) Biological tyrosine nitration: a pathophysiological function of nitric oxide and reactive oxygen species. Arch Biochem Biophys 356:1–11

    Article  PubMed  CAS  Google Scholar 

  12. Ischiropoulos H (2003) Biological selectivity and functional aspects of protein tyrosine nitration. Biochem Biophys Res Commun 305:776–783

    Article  PubMed  CAS  Google Scholar 

  13. Ischiropoulos H, al-Mehdi AB (1995) Peroxynitrite-mediated oxidative protein modifications. FEBS Lett 364:279–282

    Article  PubMed  CAS  Google Scholar 

  14. Khairutdinov RF, Coddington JW, Hurst JK (2000) Permeation of phospholipid membranes by peroxynitrite. Biochemistry 39:14238–14249

    Article  PubMed  CAS  Google Scholar 

  15. Khan J, Brennan DM, Bradley N, Gao B, Bruckdorfer R, Jacobs M (1998) 3-Nitrotyrosine in the proteins of human plasma determined by an ELISA method. Biochem J 330:795–801

    PubMed  CAS  Google Scholar 

  16. Kolodziejczyk J, Olas B, Wachowicz B, Szajwaj B, Stochmal A, Oleszek W (2011) Clovamide-rich extract from Trifolium pallidum reduces oxidative stress-induced damage to blood platelets and plasma. J Physiol Biochem 67:391–399

    Article  PubMed  CAS  Google Scholar 

  17. Kolodziejczyk-Czepas J (2012) Trifolium species-derived substances and extracts—biological activity and prospects for medicinal applications. J Ethnopharmacol 143:14–23

    Article  PubMed  Google Scholar 

  18. Kolodziejczyk-Czepas J, Olas B, Wachowicz B, Szajwaj B, Stochmal A, Oleszek W (2013) Extracts from Trifolium pallidum and Trifolium scabrum aerial parts as modulators of blood platelet adhesion and aggregation. Platelets 24:136–144

    Article  PubMed  CAS  Google Scholar 

  19. Lai HH, Yen GC (2002) Inhibitory effect of isoflavones on peroxynitrite-mediated low-density lipoprotein oxidation. Biosci Biotechnol Biochem 66:22–28

    Article  PubMed  CAS  Google Scholar 

  20. Lam ANC, Demasi M, James MJ, Husband AJ, Walker C (2004) Effect of red clover isoflavones on COX-2 activity in murine and human monocyte/macrophage cells. Nutr Cancer 49:89–93

    Article  PubMed  CAS  Google Scholar 

  21. Ley JP, Bertram H-J (2003) Synthesis of lipophilic clovamide derivatives and their antioxidative potential against lipid peroxidation. J Agric Food Chem 1:4596–4602

    Article  Google Scholar 

  22. Low SY, Sabetkar M, Bruckdorfer KR, Naseem KM (2002) The role of protein nitration in the inhibition of platelet activation by peroxynitrite. FEBS Lett 511(1–3):59–64

    Article  PubMed  CAS  Google Scholar 

  23. Lufrano M, Balazy M (2003) Interaction of peroxynitrite and other nitrating substances with human platelets: the role of glutathione and peroxynitrite permeability. Biochem Pharmacol 65:515–523

    Article  PubMed  CAS  Google Scholar 

  24. Marcus AJ, Silk ST, Safier LB, Ullman HL (1977) Superoxide production and reducing activity in human platelets. J Clin Invest 59:149–158

    Article  PubMed  CAS  Google Scholar 

  25. Niwa T, Doi U, Kato Y, Osawa T (1999) Inhibitory mechanism of sinapinic acid against peroxynitrite-mediated tyrosine nitration of protein in vitro. FEBS Lett 459:43–46

    Article  PubMed  CAS  Google Scholar 

  26. Nowak P, Wachowicz B (2001) Studies on pig blood platelet responses to peroxynitrite action. Platelets 12:376–381

    Article  PubMed  CAS  Google Scholar 

  27. Olas B, Nowak P, Kolodziejczyk J, Ponczek M, Wachowicz B (2006) Protective effects of resveratrol against oxidative/nitrative modifications of plasma proteins and lipids exposed to peroxynitrite. J Nutr Biochem 7:96–102

    Article  Google Scholar 

  28. Olas B, Wachowicz B (2007) Role of reactive nitrogen species in blood platelet functions. Platelets 18:555–565

    Article  PubMed  CAS  Google Scholar 

  29. Oleszek W, Stochmal A, Janda B (2007) Concentration of isoflavones and other phenolics in the aerial parts of Trifolium species. J Agric Food Chem 55:8095–8100

    Article  PubMed  CAS  Google Scholar 

  30. Pryor WA, Cueto R, Jin X, Koppenol WH, Ngu-Schwemlein M, Squadrito GL, Uppu PL, Uppu RM (1991) A practical method for preparing peroxynitrite solutions of low ionic strength and free of hydrogen peroxide. Free Radic Biol Med 1:75–83

    Google Scholar 

  31. Quijano C, Alvarez B, Gatti RM, Augusto O, Radi R (1997) Pathways of peroxynitrite oxidation of thiol groups. Biochem J 322:167–173

    PubMed  CAS  Google Scholar 

  32. Redondo PC, Jardin I, Hernández-Cruz JM, Pariente JA, Salido GM, Rosado JA (2005) Hydrogen peroxide and peroxynitrite enhance Ca2+ mobilization and aggregation in platelets from type 2 diabetic patients. Biochem Biophys Res Commun 333(3):794–802

    Article  PubMed  CAS  Google Scholar 

  33. Rice-Evans CA, Diplock AT, Symons MCR (1991) Techniques in free radicals research. In: Burdon RH, van Knippenberg PH (eds) Laboratory techniques in biochemistry and molecular biology. Elsevier, New York, pp 207–235

    Google Scholar 

  34. Romero N, Denicola A, Souza JM, Radi R (1999) Diffusion of peroxynitrite in the presence of carbon dioxide. Arch Biochem Biophys 368:23–30

    Article  PubMed  CAS  Google Scholar 

  35. Rubbo H, Trostchansky A, O'Donnell VB (2009) Peroxynitrite-mediated lipid oxidation and nitration: mechanisms and consequences. Arch Biochem Biophys 484:167–172

    Article  PubMed  CAS  Google Scholar 

  36. Sabetkar M, Low SY, Naseem KM, Bruckdorfer KR (2002) The nitration of proteins in platelets: significance in platelet function. Free Radic Biol Med 33:728–736

    Article  PubMed  CAS  Google Scholar 

  37. Sanbongi C, Osakabe N, Natsume M, Takizawa T, Gomi S, Osawa T (1998) Antioxidative polyphenols isolated from Theobroma cacao. J Agric Food Chem 46:454–457

    Article  PubMed  CAS  Google Scholar 

  38. Shahidi F, Chandrasekara A (2010) Hydroxycinnamates and their in vitro and in vivo antioxidant activities. Phytochem Rev 9:147–170

    Article  CAS  Google Scholar 

  39. Soszyński M, Bartosz G (1996) Effect of peroxynitrite on erythrocytes. Biochim Biophys Acta 291:107–114

    Article  Google Scholar 

  40. Stochmal A, Piacente S, Pizza C, De Riccardis F, Leitz R, Oleszek W (2001) Alfalfa (Medicago sativa L.) flavonoids. 1. Apigenin and luteolin glycosides from aerial parts. J Agric Food Chem 49:753–758

    Article  PubMed  CAS  Google Scholar 

  41. Tabaczar S, Koceva-Chyla A, Czepas J, Pieniazek A, Piasecka-Zelga J, Gwozdzinski K (2012) Nitroxide pirolin reduces oxidative stress generated by doxorubicin and docetaxel in blood plasma of rats bearing mammary tumor. J Physiol Pharmacol 63:153–163

    PubMed  CAS  Google Scholar 

  42. Thompson Coon J, Pittler MH, Ernst E (2007) Trifolium pratense isoflavones in the treatment of menopausal hot flushes: a systematic review and meta-analysis. Phytomedicine 14:153–159

    Article  Google Scholar 

  43. Wachowicz B (1984) Adenine nucleotides in thrombocytes of birds. Cell Biochem Funct 2:167–170

    Article  PubMed  CAS  Google Scholar 

  44. Wachowicz B, Kustron J (1992) Effect of cisplatin on lipid peroxidation in pig blood platelets. Cytobios 70:41–47

    PubMed  CAS  Google Scholar 

  45. Wachowicz B, Olas B, Zbikowska HM, Buczynski A (2002) Generation of reactive oxygen species in blood platelets. Platelets 13:175–182

    Article  PubMed  CAS  Google Scholar 

  46. Wachowicz B, Rywaniak JZ, Nowak P (2008) Apoptotic markers in human blood platelets treated with peroxynitrite. Platelets 19:624–635

    Article  PubMed  CAS  Google Scholar 

  47. Walkowiak B, Michalak E, Koziolkiewicz W, Cierniewski CS (1989) Rapid photometric method for estimation of platelet count in blood plasma or platelet suspension. Thromb Res 56:763–766

    Article  PubMed  CAS  Google Scholar 

  48. Zalba G, Fortuno A, San Jose G, Moreno MU, Beloqui O, Diez J (2007) Oxidative stress, endothelial dysfunction and cerebrovascular disease. Cerebrovasc Dis 24:24–29

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grant 506/810, 545/217 and 545/464 from the University of Lodz (Lodz, Poland), as well as by statutory activities of the Institute of Soil Science and Plant Cultivation–State Research Institute, (Pulawy, Poland). Special thanks goes to Dr. Pawel Nowak (Department of General Biochemistry, University of Lodz) for supplying of peroxynitrite, and to Dr. Beata Olas (Department of General Biochemistry, University of Lodz) for reading the manuscript and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Kolodziejczyk-Czepas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolodziejczyk-Czepas, J., Wachowicz, B., Moniuszko-Szajwaj, B. et al. Antioxidative effects of extracts from Trifolium species on blood platelets exposed to oxidative stress. J Physiol Biochem 69, 879–887 (2013). https://doi.org/10.1007/s13105-013-0264-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-013-0264-5

Keywords

Navigation