Skip to main content
Log in

Autocrine modulation of glucose transporter SGLT2 by IL-6 and TNF-α in LLC-PK1 cells

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

We determined in cultured kidney epithelial cells (LLC-PK1) the effects of high glucose, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) on mRNA and protein expression of the renal glucose transporters SGLT1 and SGLT2. Cultured monolayers were incubated with similar concentrations of IL-6 and TNF-α to those produced by LLC-PK1 in the presence of 20 mM glucose. Confluent monolayers with either 5 (controls, C) or 20 mM glucose (high glucose, HG) were incubated in the presence of 5 mM glucose, 20 mM glucose, 10 pg/ml IL-6, or TNF-α alone or in combination. Separate groups with IL-6 and TNF-α were incubated with antibodies to their respective receptors. HG induced an increased SGLT1 mRNA at 48 h (p < 0.05 vs. C) and protein expression in 120 h (p < 0.05 vs. C). HG also induced an increased SGLT2 mRNA at 72 and 96 h (P < 0.05 vs. C) and SGLT2 protein expression at 120 h (p < 0.05 vs. C). In C, 10 pg/ml IL-6 or TNF-α did not modify SGLT1 mRNA (n.s vs. in the absence of cytokines). In contrast, cytokines induced an increased expression of SGLT1 protein at 120 h (p < 0.05 vs. in the absence of cytokines), and SGLT2 mRNA and protein were increased at 96 and 120 h, respectively (p < 0.05 vs. in absence of cytokines). No changes were observed when cells were incubated with cytokines and HG (n.s vs. C). In conclusion, this study showed that SGLT2 increased in the presence of IL-6 and TNF-α, indicating an autocrine modulation of the expression of this transporter by cytokines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ahmed KA, Muniandy S, Ismail IS (2010) Type 2 diabetes and vascular complications: a pathophysiologic view. Biomed Res 21(2):147–155

    CAS  Google Scholar 

  2. Angelo LS, Talpaz M, Kurzrock R (2002) Autocrine interleukin-6 production in renal cell carcinoma: evidence for the involvement of p53. Cancer Res 62:932–940

    PubMed  CAS  Google Scholar 

  3. Baer PC, Wegner B, Geiger H (2004) Effects of mycophenolic acid on IL-6 expression of human renal proximal and distal tubular cells in vitro. Nephrol Dial Transplant 19:47–52

    Article  PubMed  CAS  Google Scholar 

  4. David S, Biancone L, Caserta C et al (1997) Alternative pathway complement activation induces proinflammatory activity in human proximal tubular epithelial cells. Nephrol Dial Transplant 12:51–56

    Article  PubMed  CAS  Google Scholar 

  5. Dominguez JH, Camp K, Maianu L et al (1994) Molecular adaptations of GLUT1 and GLUT2 in renal proximal tubules of diabetic rats. Am J Physiol 266:F283–F290

    PubMed  CAS  Google Scholar 

  6. Dronavalli S, Duka I, Bakris GL (2008) The pathogenesis of diabetic nephropathy. Nat Clin Pract Endocrinol Metab 4(8):444–452

    Article  PubMed  CAS  Google Scholar 

  7. Greenberg AS, Obin MS (2006) Obesity and the role of adipose tissue in inflammation and metabolism. Am J Clin Nutr 83:461S–465S

    PubMed  CAS  Google Scholar 

  8. Gu JW, Tian N, Shparago M et al (2006) Renal NF-kappaB activation and TNF-alpha upregulation correlate with salt-sensitive hypertension in Dahl salt-sensitive rats. Am J Physiol Regul Integr Comp Physiol 291(6):R1817–R1824

    Article  PubMed  CAS  Google Scholar 

  9. Han S, Hagan DL, Joseph R et al (2008) Dapagliflozin, a selective SGLT2 inhibitor, improves glucose homeostasis in normal and diabetic rats. Diabetes 57:1723–1729

    Article  PubMed  CAS  Google Scholar 

  10. Haspel HC, Mynarcik DC, Ortiz PA et al (1991) Glucose deprivation induces the selective accumulation of hexose transporter protein GLUT-1 in the plasma membrane of normal rat kidney cells. Mol Endocrinol 5:61–72

    Article  PubMed  CAS  Google Scholar 

  11. Hediger MA, Rhoads DB (1994) Molecular physiology of sodium-glucose cotransporters. Physiol Rev 74:993–1026

    PubMed  CAS  Google Scholar 

  12. Hummel Ch S, Lu Ch, Loo DDF et al (2011) Glucose transport by human renal Na+/D-glucose cotransporters SGLT1 and SGLT2. Am J Physiol Cell Physiol 300:C14–C21

    Article  Google Scholar 

  13. Ishibashi F (2004) High glucose reduces albumin uptake in cultured proximal tubular cells (LLC-PK1). Diabetes Res Clin Pract 65:217–225

    Article  PubMed  CAS  Google Scholar 

  14. Jung-MY IJ, Sridevi D (2011) Epigenetic regulation of high glucose-induced proinflammatory cytokine production in monocytes by curcumin. J Nutr Biochem 22:450–458

    Article  Google Scholar 

  15. Kamran M, Peterson RG, Dominguez JH (1997) Overexpression of GLUT2 gene in renal proximal tubules of diabetic Zucker rats. J Am Soc Nephrol 8:943–948

    PubMed  CAS  Google Scholar 

  16. Lee YJ, Park SH, Han HJ (2005) ATP stimulates Na+-glucose cotransporter activity via cAMP and p38 MAPK in renal proximal tubule cells. Am J Physiol Cell Physiol 289(5):C1268–C1276

    Article  PubMed  CAS  Google Scholar 

  17. Lescale-Matys L, Dyer J, Scott D et al (1993) Regulation of the ovine intestinal Na+/glucose co-transporter (SGLT1) is dissociated from mRNA abundance. Biochem J 291:435–440

    PubMed  CAS  Google Scholar 

  18. MacKenzie B, Loo DDF, Panayotova-Heiermann M et al (1996) Biophysical characteristics of the pig kidney Na+/glucose cotransporter SGLT2 reveal a common mechanism for SGLT1 and SGLT2. J Biol Chem 271:32678–32683

    Article  PubMed  CAS  Google Scholar 

  19. Marks J, Carvou NJC, Debnam ES et al (2003) Diabetes increases facilitative glucose uptake and GLUT2 expression in the rat proximal tubule brush border membrane. J Physiol 553:137–145

    Article  PubMed  CAS  Google Scholar 

  20. Mathieu P, Poirier P, Pibarot P et al (2009) Visceral obesity, the link among inflammation, hypertension and cardiovascular disease. Hypertension 53:577–584

    Article  PubMed  CAS  Google Scholar 

  21. Matthew SH, Ghosh S (2004) Signaling to NF-Κβ. Genes Dev 18:2195–2224

    Article  Google Scholar 

  22. Meldrum KK, Meldrum DR, Hile KL et al (2001) p38 MAPK mediates renal tubular cell TNF-α production and TNF-α-dependent apoptosis during simulated ischemia. Am J Physiol Cell Physiol 281:C563–C570

    PubMed  CAS  Google Scholar 

  23. Moran A, Davis LJ, Turner RJ (1988) High affinity phlorizin binding to the LLC-PK1 cells exhibits a sodium:phlorizin stoichiometry of 2: 1. J Biol Chem 263:187–192

    PubMed  CAS  Google Scholar 

  24. Mullin JM, Kofeldt LM, Russo LM (1992) Basolateral 3-0-methylglucose transport by cultured kidney (LLC-PK1) epithelial cells. Am J Physiol 262:F480–F487

    PubMed  CAS  Google Scholar 

  25. Navarro-Gonzalez JF, Fernandez-Navarro CM (2008) The role of inflammatory cytokines in diabetic nephropathy The role of inflammatory cytokines in diabetic nephropathy. J Am Soc Nephrol 19:433–442

    Article  PubMed  CAS  Google Scholar 

  26. Ohta T, Isselbacher KJ, Rhoads DB (1990) Regulation of glucose transporters in LLC-PK1 cells: effects of D-glucose and monosaccharides. Mol Cell Biol 10:6491–6499

    PubMed  CAS  Google Scholar 

  27. Pajor AM, Hirayama BA, Wright EM (1992) Molecular evidence for two renal Na+/glucose cotransporters. Biochim Biophys Acta 1106(1):216–220

    Article  PubMed  CAS  Google Scholar 

  28. Peng H, Lever JE (1995) Regulation of Na+-coupled glucose transport in LLC-PK1 cells. J Biol Chem 270:23996–24003

    Article  PubMed  CAS  Google Scholar 

  29. Phillips AO (2003) The role of renal proximal tubular cells in diabetic nephropathy. Curr Diab Rep 3:491–496

    Article  PubMed  Google Scholar 

  30. Phillips AO, Steadman R, Topley N et al (1995) Elevated D-glucose concentrations modulate TGF- β1 synthesis by human cultured renal proximal tubular cells the permissive role of platelet-derived growth factor. Am J Pathol 147:362–374

    PubMed  CAS  Google Scholar 

  31. Phillips AO, Topley N, Steadman R et al (1996) Induction of TGFβ1 synthesis in D-glucose primed human proximal tubular cells by IL-1β and TNFα. Kidney Int 50:1546–1554

    Article  PubMed  CAS  Google Scholar 

  32. Rahmoune H, Thompson PW, Ward JM (2005) Glucose transporters in human renal proximal tubular cells isolated from the urine of patients with non-insulin-dependent diabetes. Diabetes 54(12):3427–3434

    Article  PubMed  CAS  Google Scholar 

  33. Santer R, Calado J (2010) Familial renal glucosuria and SGLT2: from a mendelian trait to a therapeutic target. Clin J Am Soc Nephrol 5:133–141

    Article  PubMed  CAS  Google Scholar 

  34. Santer R, Kinner M, Lassen Ch L et al (2003) Molecular analysis of the SGLT2 gene in patients with renal glucosuria. J Am Soc Nephrol 14:2873–2882

    Article  PubMed  CAS  Google Scholar 

  35. Schmidt Ch, Höcherl K, Bucher M (2007) Regulation of renal glucose transporters during severe inflammation. Am J Physiol Renal Physiol 292:F804–F811

    Article  PubMed  CAS  Google Scholar 

  36. Soodsma JF, Legler B, Nordlie RC (1967) The inhibition by phlorizin of kidney microsomal inorganic pyrophosphate-glucose phosphotransferase and glucose 6-phosphatase. J Biol Chem 242(8):1955–1960

    PubMed  CAS  Google Scholar 

  37. Turner RJ, Moran A (1982) Heterogeneity of sodium-dependent D-glucose transport sites along the proximal tubule: evidence from vesicle studies. Am J Physiol 242:F406–F414

    PubMed  CAS  Google Scholar 

  38. Turner RJ, Moran A (1982) Further studies of proximal tubular brush border membrane D-glucose transport heterogeneity. J Membr Biol 70(1):37–45

    Article  PubMed  CAS  Google Scholar 

  39. Vayro S, Wood IS, Dyer J et al (2001) Transcriptional regulation of the ovine intestinal Na+/glucose cotransporter SGLT1 gene. Eur J Biochem 268:5460–5470

    Article  PubMed  CAS  Google Scholar 

  40. Wang SN, Hirschberg R (1999) Tubular epithelial cell activation and interstitial fibrosis. The role of glomerular ultrafiltration of growth factors in the nephrotic syndrome and diabetic nephropathy. Nephrol Dial Transplant 14:2072–2074

    Article  PubMed  CAS  Google Scholar 

  41. White JR, PharmD PA (2010) Apple trees to sodium glucose co-transporter inhibitors: a review of SGLT2 inhibition. Clinical Diabetes 28:5–10

    Article  Google Scholar 

  42. Wood IS, Trayhurn P (2003) Glucose transporters (GLUT and SGLT): expanded families of sugar transport protein. Br J Nutr 89:3–9

    Article  PubMed  CAS  Google Scholar 

  43. Wright EM (2001) Renal Na+/glucose cotransporters. Am J Physiol Renal Physiol 280:F10–F18

    PubMed  CAS  Google Scholar 

  44. Xu H, Barnes GT, Yang Q et al (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112:1821–1830

    PubMed  CAS  Google Scholar 

  45. Yaqoob M, McClelland P, Patrick AW et al (1994) Evidence of oxidant injury and tubular damage in early diabetic nephropathy. QJM 87:601–607

    PubMed  CAS  Google Scholar 

  46. Yung S, Lee CY, Zhang Q et al (2006) Elevated glucose induction of thrombospondin-1 up-regulates fibronectin synthesis in proximal renal tubular epithelial cells through TGF- β1 dependent and TGF- β1 independent pathways. Nephrol Dial Transplant 21:1504–1513

    Article  PubMed  CAS  Google Scholar 

  47. Zhao FQ, Keating AF (2007) Functional properties and genomics of glucose transporters. Curr Genomics 8:113–128

    Article  PubMed  CAS  Google Scholar 

  48. Zierler K (1999) Whole body glucose metabolism. Am J Physiol 276:E409–E426

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Martinez-Morales.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maldonado-Cervantes, M.I., Galicia, O.G., Moreno-Jaime, B. et al. Autocrine modulation of glucose transporter SGLT2 by IL-6 and TNF-α in LLC-PK1 cells. J Physiol Biochem 68, 411–420 (2012). https://doi.org/10.1007/s13105-012-0153-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-012-0153-3

Keywords

Navigation