Skip to main content
Log in

Least squares support vector machines with fast leave-one-out AUC optimization on imbalanced prostate cancer data

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Quite often, the available pre-biopsy data for early prostate cancer detection are imbalanced. When the least squares support vector machines (LS-SVMs) are applied to such scenarios, it becomes naturally desirable for us to introduce the well-known AUC performance index into the LS-SVMs framework to avoid bias towards majority classes. However, this may result in high computational complexity for the minimal leave-one-out error. In this paper, by introducing the parameter \(\lambda \), a generalized Area under the ROC curve (AUC) performance index \(R_{AUCLS}\) is developed to theoretically guarantee that \(R_{AUCLS}\) linearly depends on the classical AUC performance index \(R_{AUC}\). Based on both \(R_{AUCLS}\) and the classical LS-SVM, a new AUC-based least squares support vector machine called AUC-LS-SVMs is proposed for directly and effectively classifying imbalanced prostate cancer data. The distinctive advantage of the proposed classifier AUC-LS-SVMs exists in that it can achieve the minimal leave-one-out error by quickly optimizing the parameter \(\lambda \) in \(R_{AUCLS}\) using the proposed fast leave-one-out cross validation (LOOCV) strategy. The proposed classifier is first evaluated using generic public datasets. Further experiments are then conducted on a real-world prostate cancer dataset to demonstrate the efficacy of our proposed classifier for early prostate cancer detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cancer stat facts: prostate cancer. https://seer.cancer.gov/statfacts/html/prost.html. Accessed 30 Apr 2018

  2. From development to use in clinical practice - ERSPC prostate cancer risk calculator. http://www.prostatecancer-riskcalculator.com/from-development-to-use-in-clinical-practice-erspc-prostate-cancer-risk-calculator. Accessed 30 Apr 2018

  3. LIBSVM data: classification (binary Class). https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html. Accessed 30 Apr 2018

  4. UCI machine learning repository. https://archive.ics.uci.edu/ml/datasets.html. Accessed 30 Apr 2018

  5. (2004) Optimising area under the ROC curve using gradient descent. In: Proceedings of the Twenty-first international conference on machine learning, ACM, p 49

  6. Ablin R, Pfeiffer L, Gonder M, Soanes W (1968) Precipitating antibody in the sera of patients treated cryosurgically for carcinoma of the prostate. Exp Med Surg 27(4):406–410

    Google Scholar 

  7. Artan Y, Haider MA, Langer DL, Van der Kwast TH, Evans AJ, Yang Y, Wernick MN, Trachtenberg J, Yetik IS (2010) Prostate cancer localization with multispectral mri using cost-sensitive support vector machines and conditional random fields. IEEE Trans Image Process 19(9):2444–2455

    MathSciNet  MATH  Google Scholar 

  8. Brefeld U, Scheffer T (2005) AUC maximizing support vector learning. In: Proceedings of the international conference on machine learning (ICML) 2005 workshop on ROC analysis in machine learning

  9. Calders T, Jaroszewicz S (2007) Efficient AUC optimization for classification. In: European conference on principles of data mining and knowledge discovery, Springer, pp 42–53

  10. Catalona W, Hudson M, Scardino P, Richie J, Ahmann F, Flanigan R, DeKernion J, Ratliff T, Kavoussi L, Dalkin B (1994) Selection of optimal prostate specific antigen cutoffs for early detection of prostate cancer: receiver operating characteristic curves. J Urol 152(6 Pt 1):2037–2042

    Google Scholar 

  11. Catalona W, Richie J, Ahmann F, Hudson M, Scardino P, Flanigan R, Dekernion J, Ratliff T, Kavoussi L, Dalkin B (1994) Comparison of digital rectal examination and serum prostate specific antigen in the early detection of prostate cancer: results of a multicenter clinical trial of 6,630 men. J Urol 151(5):1283–1290

    Google Scholar 

  12. Cawley GC (2006) Leave-one-out cross-validation based model selection criteria for weighted ls-svms. In: The 2006 IEEE international joint conference on neural network proceedings, IEEE, pp 1661–1668

  13. Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2(3):27

    Google Scholar 

  14. Chawla NV, Japkowicz N, Kotcz A (2004) Special issue on learning from imbalanced data sets. ACM SIGKDD Explor Newsl 6(1):1–6

    Google Scholar 

  15. Çınar M, Engin M, Engin EZ, Ateşçi YZ (2009) Early prostate cancer diagnosis by using artificial neural networks and support vector machines. Expert Syst Appl 36(3):6357–6361

    Google Scholar 

  16. Cortes C, Mohri M (2004) AUC optimization vs. erlror rate minimization. In: advances in neural information processing systems, pp 313–320

  17. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    MATH  Google Scholar 

  18. Elkan C (2001) The foundations of cost-sensitive learning. In: International joint conference on artificial intelligence, Lawrence Erlbaum Associates Ltd, vol 17, pp 973–978

  19. Gao W, Jin R, Zhu S, Zhou ZH (2013) One-pass AUC optimization. In: International conference on machine learning, pp 906–914

  20. Gao W, Zhou ZH (2015) On the consistency of AUC pairwise optimization. In: International joint conference on artificial intelligence (IJCAI), pp 939–945

  21. Ghazikhani A, Monsefi R, Yazdi HS (2014) Online neural network model for non-stationary and imbalanced data stream classification. Int J Mach Learn Cybern 5(1):51–62

    Google Scholar 

  22. Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143(1):29–36

    Google Scholar 

  23. Holst A et al (2008) Efficient AUC maximization with regularized least-squares. In: Tenth Scandinavian conference on artificial intelligence: SCAI 2008, IOS Press, vol 173, p 12

  24. Joachims T (2005) A support vector method for multivariate performance measures. In: Proceedings of the 22nd international conference on machine learning, ACM, pp 377–384

  25. Krawczyk B (2016) Learning from imbalanced data: open challenges and future directions. Prog Artif Intell 5(4):221–232

    Google Scholar 

  26. Lee W, Jun CH, Lee JS (2017) Instance categorization by support vector machines to adjust weights in AdaBoost for imbalanced data classification. Inf Sci 381:92–103

    Google Scholar 

  27. Li S, Zhang Y, Xu J, Li L, Zeng Q, Lin L, Guo Z, Liu Z, Xiong H, Liu S (2014) Noninvasive prostate cancer screening based on serum surface-enhanced raman spectroscopy and support vector machine. Appl Phys Lett 105(9):091104

    Google Scholar 

  28. Liu Y (2004) Active learning with support vector machine applied to gene expression data for cancer classification. J Chem Inf Comput Sci 44(6):1936–1941

    Google Scholar 

  29. Mao W, Wang J, Xue Z (2017) An ELM-based model with sparse-weighting strategy for sequential data imbalance problem. Int J Mach Learn Cybern 8(4):1333–1345

    Google Scholar 

  30. Nadji M, Tabei SZ, Castro A, Chu TM, Murphy GP, Wang MC, Morales AR (1981) Prostatic-specific antigen: an immunohistologic marker for prostatic neoplasms. Cancer 48(5):1229–1232

    Google Scholar 

  31. Rakotomamonjy A (2004) Optimizing area under ROC curve with SVMs. In: ROCAI, pp 71–80

  32. Rezvani S, Wang X, Pourpanah F (2019) Intuitionistic fuzzy twin support vector machines. IEEE Trans Fuzzy Syst 27(11):2140–2151

    Google Scholar 

  33. Riedel KS (1992) A Sherman-Morrison-Woodbury identity for rank augmenting matrices with application to centering. SIAM J Matrix Anal Appl 13(2):659–662

    MathSciNet  MATH  Google Scholar 

  34. Suykens J, Van Gestel T, De Brabanter J, De Moor B, Vandewalle J (2002) Least squares support vector machine classifiers. World Scientific, Singapore

    MATH  Google Scholar 

  35. Vapnik VN (1999) An overview of statistical learning theory. IEEE Trans Neural Netw 10(5):988–999

    Google Scholar 

  36. Wang G, Lu J, Choi KS, Zhang G (2018) A transfer-based additive LS-SVM classifier for handling missing data. IEEE Trans Cybern 50(2):739–752

    Google Scholar 

  37. Wang G, Zhang G, Choi K, Lu J (2019) Deep additive least squares support vector machines for classification with model transfer. IEEE Trans Syst Man Cybern Syst 49(7):1527–1540

    Google Scholar 

  38. Ye J, Xiong T (2007) SVM versus least squares SVM. In: Artificial intelligence and statistics, pp 644–651

  39. Ying Y, Wen L, Lyu S (2016) Stochastic online AUC maximization. In: Advances in neural information processing systems, pp 451–459

  40. Zhang C, Zhou Y, Guo J, Wang G, Wang X (2018) Research on classification method of high-dimensional class-imbalanced datasets based on SVM. Int J Mach Learn Cybern. https://doi.org/10.1007/s13042-018-0853-2

    Article  Google Scholar 

  41. Zhang K, Kwok JT (2010) Simplifying mixture models through function approximation. IEEE Trans Neural Netw 21(4):644–658

    Google Scholar 

  42. Zhao P, Hoi SC, Jin R, YANG T (2011) Online AUC maximization. In: Proceedings of the 28th international conference on machine learning ICML. International Machine Learning Society

  43. Zhou ZH, Liu XY (2006) Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Trans Knowl Data Eng 18(1):63–77

    MathSciNet  Google Scholar 

  44. Zhu Z, Wang Z, Li D, Du W (2019) Multiple empirical kernel learning with majority projection for imbalanced problems. Appl Soft Comput 76:221–236

    Google Scholar 

Download references

Acknowledgements

The work was supported by the Innovation and Technology Commission of the Government of the Hong Kong SAR under the ITF-MRP project (MRP/015/18), the Australian Research Council (ARC) under Discovery Grant DP170101632 and G. Wang is supported by Murdoch New Staff Startup Grant (SEIT NSSG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanjin Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Equation (10) can be reformulated as

$$\begin{aligned}&\ \begin{array}{ll} \min \limits _{\varvec{w},b,{\varvec{\xi }}} &{}\ \frac{1}{2}\varvec{w}^T\varvec{w} +\frac{\gamma }{2}\sum \limits _{i=1}^{N}\xi _{i}^2\\ &{}\ +\frac{C}{2}\sum \limits _{k\in N_+}\sum \limits _{l\in N_-} \frac{\left( \lambda -\varvec{w}^T(\varphi {(\varvec{x}_k)} -\varphi {(\varvec{x}_l)})\right) ^2}{n_+n_-} \end{array}\nonumber \\&\begin{array}{ll} \text {s.t} &{} \ y_{i}=\varvec{w}^T\varphi (\varvec{x}_{i}) +b+\xi _{i}, i=1,2,\ldots ,N\\ &{}\ (N=n^+ + n^-) \end{array} \end{aligned}$$
(23)

To derive the dual problem by constructing the Lagrangian, we formulate the Lagrangian J for Eq. (23)

$$\begin{aligned} J&=\frac{1}{2}\varvec{w}^2 + \frac{C}{2}\sum _{k\in N_+} \sum _{l\in N_-}\frac{\left( \lambda -\varvec{w}^T(\varphi {(\varvec{x}_k)} -\varphi {(\varvec{x}_l)})\right) ^2}{n_+n_-}\nonumber \\&\quad +\frac{\gamma }{2}\sum _{i=1}^{N}\xi _{i}^2 +\sum _{i=1}^{N}\alpha _{i}(y_{i}-\varvec{w}^T \varphi (\varvec{x}_{i})-b-\xi _{i}) \end{aligned}$$
(24)

where \({\varvec{\alpha }}_{i}=(\alpha _1,\alpha _2,\ldots ,\alpha _{N})\) is the vector of Lagrangian multipliers. The conditions for optimality are given by

$$\begin{aligned} \frac{\partial J}{\partial \varvec{w}}&=0 \Rightarrow \varvec{w}+C\sum _{k\in N^+}\sum _{l\in N^-} \frac{\left( \lambda -\varvec{w}^T\left( \varphi (\varvec{x}_k) -\varphi (\varvec{x}_l)\right) \right) }{n^+n^-}\nonumber \\&\quad \left( -\left( \varphi (\varvec{x}_k)-\varphi (\varvec{x}_l)\right) \right) -\sum _{i=1}^{N}\alpha _i\varvec{x}_i=0\nonumber \\&\quad \Rightarrow \varvec{w}+\frac{C}{n^+n^-} \sum _{k\in N^+}\sum _{l\in N^-}\left( \varphi (\varvec{x}_l) -\varphi (\varvec{x}_k)\right) \nonumber \\&\quad \left( \lambda -\varvec{w}^T\left( \varphi (\varvec{x}_k) -\varphi (\varvec{x}_l)\right) \right) -\sum _{i=1}^{N}\alpha _i \varphi {(\varvec{x}_i)}=0 \end{aligned}$$
(25)

Since \(\varvec{w}^T\left( \varphi (\varvec{x}_k) -\varphi (\varvec{x}_l)\right) \) is scalar, \(\varvec{w}^T \left( \varphi (\varvec{x}_k)-\varphi (\varvec{x}_l)\right) =\left( \varphi (\varvec{x}_k)-\varphi (\varvec{x}_l)\right) ^T\varvec{w}\). We can further write Eq. (25) into

$$\begin{aligned} \frac{\partial J}{\partial \varvec{w}}&=0 \Rightarrow \varvec{w}+\frac{\lambda C}{n^+ n^-} \sum _{k \in N^+} \sum _{l \in N^-}\left( \varphi (\varvec{x}_l) -\varphi (\varvec{x}_k)\right) \nonumber \\&\quad +\frac{C}{n^+ n^-}\sum _{k \in N^+} \sum _{l \in N^-} \left( \varphi (\varvec{x}_k)-\varphi (\varvec{x}_l)\right) \left( \varphi (\varvec{x}_k)\right. \nonumber \\&\quad \left. -\varphi (\varvec{x}_l)\right) ^T\varvec{w} -\sum _{i=1}^{N}\alpha _{i}\varphi {(\varvec{x}_{i})}=0\nonumber \\&\quad \Rightarrow \varvec{w}=\mathbf{H} \left( \sum _{i=1}^{N} \alpha _{i}\varphi (\varvec{x}_{i})+\frac{\lambda C}{n_+n_-} \sum _{k\in N+}\sum _{l\in N-}\right. \nonumber \\&\quad \left. \left( \varphi {(\varvec{x}_k)}-\varphi (\varvec{x}_l)\right) \right) \end{aligned}$$
(26)

where \(\mathbf{H} =\left[ \varvec{I}+\frac{C}{n^+ n^-}\sum _{k\in N+} \sum _{l\in N-}\left( \varphi (\varvec{x}_k) -\varphi (\varvec{x}_l)\right) \left( \varphi (\varvec{x}_k) -\varphi (\varvec{x}_l)\right) ^T\right] ^{-1}\), \(\varvec{I}\) is the \(N\times N\) identity matrix and \(\left( \varphi {(\varvec{x}_k)} -\varphi (\varvec{x}_l)\right) \left( \varphi {(\varvec{x}_k)}-\varphi (\varvec{x}_l)\right) ^T\) is an \(N\times N\) matrix.

$$\begin{aligned} \frac{\partial J}{\partial b}= & {} 0 \Rightarrow \sum _{i=1}^{N}\alpha _{i}=0 \end{aligned}$$
(27)
$$\begin{aligned} \frac{\partial J}{\partial \xi _{i}}= & {} 0 \Rightarrow \alpha _{i}=\gamma \xi _{i} \end{aligned}$$
(28)
$$\begin{aligned} \frac{\partial J}{\partial \alpha _{i}}= & {} 0 \Rightarrow y_{i}=\varvec{w}^T\varphi {(\varvec{x}_{i})}+b+\xi _{i} \end{aligned}$$
(29)

According to Sherman-Morrison-Woodbury formula [33], given an invertible (nonsingular) matrix \(\mathbf{A} \) and column vectors \(\varvec{u}\) and \(\varvec{v}\), assuming \(1+\varvec{v}^{T}{} \mathbf{A} ^{-1} \varvec{u}\ne 0\), we have

$$\begin{aligned} (\mathbf{A }+{\varvec{uv}}^{T})^{-1}=\mathbf{A }^{-1} -\frac{\mathbf{A }^{-1}{\varvec{uv}}^{T}\mathbf{A }^{-1}}{1+{\varvec{v}}^{T}\mathbf{A }^{-1}{\varvec{u}}} \end{aligned}$$
(30)

In particular if \(\mathbf{A} =\varvec{I}\), we immediately have \((\varvec{I}+\varvec{u}\varvec{v}^T)^{-1}=\varvec{I} -\frac{\varvec{u}\varvec{v}^T}{1+\varvec{v}^T\varvec{u}}\). By applying this formula to H, we can rewrite H into

$$\begin{aligned} \mathbf{H}&= \varvec{I} -\frac{C}{n^+ n^-}\sum _{k \in N^+}\sum _{l \in N^-}\nonumber \\&\quad \frac{\left( \varphi (\varvec{x}_k)-\varphi (\varvec{x}_l)\right) \left( \varphi (\varvec{x}_k)-\varphi (\varvec{x}_l)\right) ^T}{\left[ 1+\frac{C}{n^+ n^-}\sum _{k \in N^+}\sum _{l \in N^-} \left( \varphi (\varvec{x}_k)-\varphi (\varvec{x}_l)\right) ^T \left( \varphi (\varvec{x}_k)-\varphi (\varvec{x}_l)\right) \right] }\nonumber \\&= \varvec{I} \nonumber \\&\quad -\frac{\sum _{k \in N^+}\sum _{j\in N^-}\left( \varphi (\varvec{x}_k) -\varphi (\varvec{x}_l)\right) \left( \varphi (\varvec{x}_k) -\varphi (\varvec{x}_l)\right) ^T}{\frac{n^+n^-}{C}+\sum _{k \in N^+} \sum _{l \in N^-}\left( k(\varvec{x}_k,\varvec{x}_k) +k(\varvec{x}_l,\varvec{x}_l)-2 k(\varvec{x}_k,\varvec{x}_l)\right) } \end{aligned}$$
(31)

We notice that the denominator in Eq. (31) is a scalar. If we use M to represent it, Eq. (31) can be simplified into

$$\begin{aligned} \mathbf{H}&=\varvec{I}-\frac{\sum _{k \in N^+} \sum _{l \in N^-}\left( \varphi {(\varvec{x}_k)} -\varphi {(\varvec{x}_l)}\right) \left( \varphi {(\varvec{x}_k)} -\varphi (\varvec{x}_l)\right) ^T}{M} \end{aligned}$$
(32)

and accordingly Eq. (26) can be simplified into

$$\begin{aligned} \varvec{w}&=\left( \varvec{I}-\frac{1}{M}\sum _{k \in N^+} \sum _{l \in N^-}\left( \varphi {(\varvec{x}_k)}-\varphi {(\varvec{x}_l)}\right) \left( \varphi {(\varvec{x}_k)}-\varphi {(\varvec{x}_l)}\right) ^T\right) \nonumber \\&\quad \left( \sum _{i=1}^{N}\alpha _i\varphi {(\varvec{x}_k)}+\frac{\lambda C}{n^+ n^-} \sum _{k \in N^+}\sum _{l \in N^-}\left( \varphi (\varvec{x}_k) -\varphi (\varvec{x}_l)\right) \right) \end{aligned}$$
(33)

By eliminating \(\varvec{w}\) and \(\xi _i\), we can get the following solution

$$\begin{aligned} y_i&=\varphi ^T{(\varvec{x}_i)}\left( \varvec{I} -\frac{1}{M}\sum _{k \in N^+}\sum _{l \in N^-} \left( \varphi {(\varvec{x}_k)}-\varphi {(\varvec{x}_l)}\right) \left( \varphi {(\varvec{x}_k)}-\varphi {(\varvec{x}_l)}\right) ^T\right) \nonumber \\&\quad \left( \sum _{i=1}^{N}\alpha _i\varphi {(\varvec{x}_i)} +\frac{\lambda C}{n^+n^-}\sum _{k \in N^+}\sum _{l \in N^-} \left( \varphi (\varvec{x}_k)-\varphi (\varvec{x}_l)\right) \right) +b+\frac{\alpha _i}{\gamma }\nonumber \\&=\left( \varphi ^T(\varvec{x}_i)-\frac{1}{M}\sum _{k \in N^+}\sum _{l \in N^-} \left( k(\varvec{x}_i,\varvec{x}_k)-k(\varvec{x}_k,\varvec{x}_l)\right) \left( \varphi {(\varvec{x}_k)}\right. \right. \nonumber \\&\quad \left. \left. -\varphi {(\varvec{x}_l)}\right) ^T\right) \left( \sum _{i=1}^{N}\alpha _i\varphi {(\varvec{x}_i)}+\frac{\lambda C}{n^+n^-} \sum _{k \in N^+}\sum _{l \in N^-}\left( \varphi (\varvec{x}_k) -\varphi (\varvec{x}_l)\right) \right) \nonumber \\&\quad +b+\frac{\alpha _i}{\gamma }\nonumber \\&=\sum _{k=1}^{N}\alpha _k\left[ k(\varvec{x}_i,\varvec{x}_k) -\frac{1}{M}\sum _{p \in N^+}\sum _{l \in N^-} \left( k(\varvec{x}_i,\varvec{x}_p) -k(\varvec{x}_i,\varvec{x}_l)\right) \right. \nonumber \\&\quad \left. \left( k(\varvec{x}_p,\varvec{x}_k)-k(\varvec{x}_l,\varvec{x}_k) \right) \right] +\frac{\lambda C}{n^+ n^-}\sum _{k \in N^+}\sum _{l \in N^-} \left\{ \left( k(\varvec{x}_i,\varvec{x}_k)\right. \right. \nonumber \\&\quad \left. -k(\varvec{x}_i,\varvec{x}_l)\right) -\frac{1}{M}\sum _{p\in N^+} \sum _{q\in N^-}\left( k(\varvec{x}_i,\varvec{x}_p) -k(\varvec{x}_i,\varvec{x}_q)\right) \sum _{k\in N^+}\sum _{l \in N^-}\nonumber \\&\quad \left. \left( k(\varvec{x}_p,\varvec{x}_k)-k(\varvec{x}_p,\varvec{x}_l) -k(\varvec{x}_q,\varvec{x}_k)+k(\varvec{x}_q,\varvec{x}_l)\right) \right\} +b+\frac{\alpha _i}{\gamma } \end{aligned}$$
(34)

We denote \(k(\varvec{x}_i,\varvec{x}_k)-\frac{1}{M}\sum _{p \in N^+}\sum _{l \in N^-}\left( k(\varvec{x}_i,\varvec{x}_p) -k(\varvec{x}_i,\varvec{x}_l)\right) \left( k(\varvec{x}_p, \varvec{x}_k)-k(\varvec{x}_l,\varvec{x}_k)\right) \) as \(\tilde{k}(\varvec{x}_i,\varvec{x}_k)\), and \(\frac{C}{n^+ n^-} \sum _{k \in N^+}\sum _{l \in N^-}\left\{ \left( k(\varvec{x}_i, \varvec{x}_k)-k(\varvec{x}_i,\varvec{x}_l)\right) -\frac{1}{M}\sum _{p\in N^+} \sum _{q\in N^-} \left( k(\varvec{x}_i, \varvec{x}_p)-k(\varvec{x}_i,\varvec{x}_q)\right) \sum _{k\in N^+}\sum _{l \in N^-}\left( k(\varvec{x}_p,\varvec{x}_k) -k(\varvec{x}_p,\varvec{x}_l) -k(\varvec{x}_q, \varvec{x}_k)+k(\varvec{x}_q,\varvec{x}_l)\right) \right\} \) as \( f(\varvec{x}_i)\), therefore we can rewrite Eq. (34) into

$$\begin{aligned} y_i=\sum _{k=1}^{N}\alpha _k \tilde{k}(\varvec{x}_i,\varvec{x}_k) +\lambda f(\varvec{x}_i)+b+\frac{\alpha _i}{\gamma } \end{aligned}$$
(35)

We can further write the above linear equation in the matrix form

$$\begin{aligned} \begin{bmatrix} \tilde{\mathbf{K }}+\frac{\varvec{I}}{\gamma } &{} \varvec{1} \\ \varvec{1}^T &{} 0 \end{bmatrix} \begin{bmatrix} {\varvec{\alpha }}\\ b \end{bmatrix} = \begin{bmatrix} \varvec{y}-\lambda \varvec{f}\\ 0 \end{bmatrix} \end{aligned}$$
(36)

where \(\varvec{y}=[y_1;\ldots ;y_N]^T\), \(\varvec{1}=[1;\ldots ;1]\), \(\varvec{f} =[f(\varvec{x}_1);\ldots ;f(\varvec{x}_N)]^T\), and \(\tilde{\mathbf{K }}=(\tilde{k}(\varvec{x}_i,\varvec{x}_k))_{N \times N}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Teoh, J.YC., Lu, J. et al. Least squares support vector machines with fast leave-one-out AUC optimization on imbalanced prostate cancer data. Int. J. Mach. Learn. & Cyber. 11, 1909–1922 (2020). https://doi.org/10.1007/s13042-020-01081-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-020-01081-y

Keywords

Navigation