Skip to main content

Advertisement

Log in

X, but not Y, Chromosomal Complement Contributes to Stroke Sensitivity in Aged Animals

  • Research
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Post-menopausal women become vulnerable to stroke and have poorer outcomes and higher mortality than age-matched men, and previous studies suggested that sex chromosomes play a vital role in mediating stroke sensitivity in the aged. It is unknown if this is due to effects of the X or Y chromosome. The present study used the XY* mouse model (with four genotypes: XX and XO gonadal females and XY and XXY gonadal males) to compare the effect of the X vs. Y chromosome compliment in stroke. Aged (18–20 months) and gonadectomized young (8–12 weeks) mice were subjected to a 60-min middle cerebral artery occlusion. Infarct volume and behavioral deficits were quantified 3 days after stroke. Microglial activation and infiltration of peripheral leukocytes in the aged ischemic brain were assessed by flow cytometry. Plasma inflammatory cytokine levels by ELISA, and brain expression of two X chromosome–linked genes, KDM6A and KDM5C by immunochemistry, were also examined. Both aged and young XX and XXY mice had worse stroke outcomes compared to XO and XY mice, respectively; however, the difference between XX vs. XXY and XO vs. XY aged mice was minimal. Mice with two copies of the X chromosome showed more robust microglial activation, higher brain-infiltrating leukocytes, elevated plasma cytokine levels, and enhanced co-localization of KDM6A and KDM5C with Iba1+ cells after stroke than mice with one X chromosome. The number of X chromosomes mediates stroke sensitivity in aged mice, which might be processed through the X chromosome–linked genes and the inflammatory responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACA:

Anterior cerebral artery

CNS:

Central nervous system

CV:

Crystal violet

DiI:

1,1′-Dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate

ELISA:

Enzyme-linked immunosorbent assay

FC:

Flow cytometry

FCG:

Four core genotypes

FISH:

Fluorescence in situ hybridization

IHC:

Immunohistochemistry

IL-1β:

Interleukin-beta

iNOS:

Inducible NO synthase

KDM5C:

Lysine demethylase 5C

KDM6A:

Lysine-specific demethylase 6A

MCA:

Middle cerebral artery

MCAO:

Middle cerebral artery occlusion

NDS:

Neurological deficit scores

PCA:

Posterior cerebral artery

PFA:

Paraformaldehyde

TNFα:

Tumor necrosis factor alpha

XCI:

X chromosome inactivation

References

  1. Sealy-Jefferson S, et al. Age- and ethnic-specific sex differences in stroke risk. Gend Med. 2012;9(2):121–8.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Petrea Rodica E, et al. Gender differences in stroke incidence and poststroke disability in the Framingham Heart Study. Stroke. 2009;40(4):1032–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. McCullough LD, Hurn PD. Estrogen and ischemic neuroprotection: an integrated view. Trends Endocrinol Metab. 2003;14(5):228–35.

    Article  CAS  PubMed  Google Scholar 

  4. Manwani B, et al. Sex differences in ischemic stroke sensitivity are influenced by gonadal hormones, not by sex chromosome complement. J Cereb Blood Flow Metab. 2015;35(2):221–9.

    Article  CAS  PubMed  Google Scholar 

  5. Liu F, et al. Effects of chronic and acute oestrogen replacement therapy in aged animals after experimental stroke. J Neuroendocrinol. 2012;24(2):319–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schreihofer DA, Ma Y. Estrogen receptors and ischemic neuroprotection: who, what, where, and when? Brain Res. 2013;1514:107–22.

    Article  CAS  PubMed  Google Scholar 

  7. Koellhoffer EC, McCullough LD. The effects of estrogen in ischemic stroke. Transl Stroke Res. 2013;4(4):390–401.

    Article  CAS  PubMed  Google Scholar 

  8. McCullough LD, et al. Stroke sensitivity in the aged: sex chromosome complement vs. gonadal hormones. Aging (Albany NY). 2016;8(7):1432–41.

    Article  CAS  PubMed  Google Scholar 

  9. Chang L, et al. Histone H3 lysine 27 demethylase KDM6B aggravates ischemic brain injury through demethylation of IRF4 and Notch2-dependent SOX9 activation. Mol Ther - Nucleic Acids. 2021.

  10. Felling RJ, Song H. Epigenetic mechanisms of neuroplasticity and the implications for stroke recovery. Exp Neurol. 2015;268:37–45.

    Article  CAS  PubMed  Google Scholar 

  11. Hwang JY, Aromolaran KA, Zukin RS. Epigenetic mechanisms in stroke and epilepsy. Neuropsychopharmacology. 2013;38(1):167–82.

    Article  CAS  PubMed  Google Scholar 

  12. Lindgren A. Stroke genetics: a review and update. J Stroke. 2014;16(3):114–23.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Qi S, et al. X chromosome escapee genes are involved in ischemic sexual dimorphism through epigenetic modification of inflammatory signals. J Neuroinflammation. 2021;18(1):70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Arnold AP, et al. Cell-autonomous sex determination outside of the gonad. Dev Dyn. 2013;242(4):371–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Arnold AP, et al. Sex hormones and sex chromosomes cause sex differences in the development of cardiovascular diseases. Arterioscler Thromb Vasc Biol. 2017;37(5):746–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Burgoyne PS, Arnold AP. A primer on the use of mouse models for identifying direct sex chromosome effects that cause sex differences in non-gonadal tissues. Biol Sex Differ. 2016;7(1):68.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wistuba J, et al. Male 41, XXY* mice as a model for klinefelter syndrome: hyperactivation of leydig cells. Endocrinology. 2010;151(6):2898–910.

    Article  CAS  PubMed  Google Scholar 

  18. Liu F, McCullough LD. The middle cerebral artery occlusion model of transient focal cerebral ischemia. Methods Mol Biol. 2014;1135:81–93.

    Article  CAS  PubMed  Google Scholar 

  19. Li X, et al. Chronic behavioral testing after focal ischemia in the mouse: functional recovery and the effects of gender. Exp Neurol. 2004;187(1):94–104.

    Article  PubMed  Google Scholar 

  20. Liu F, Schafer DP, McCullough LD. TTC, fluoro-Jade B and NeuN staining confirm evolving phases of infarction induced by middle cerebral artery occlusion. J Neurosci Methods. 2009;179(1):1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Al Mamun A, et al. Interferon regulatory factor 4/5 signaling impacts on microglial activation after ischemic stroke in mice. Eur J Neurosci. 2018;47(2):140–9.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Al Mamun A, et al. Microglial IRF5-IRF4 regulatory axis regulates neuroinflammation after cerebral ischemia and impacts stroke outcomes. Proc Natl Acad Sci U S A, 2019.

  23. Deacon RMJ, Rawlins JNP. T-maze alternation in the rodent. Nat Protoc. 2006;1(1):7–12.

    Article  PubMed  Google Scholar 

  24. Swonger AK, Rech RH. Serotonergic and cholinergic involvement in habituation of activity and spontaneous alternation of rats in a Y maze. J Comp Physiol Psychol. 1972;81(3):509–22.

    Article  CAS  PubMed  Google Scholar 

  25. Hsiao KK, et al. Age-related CNS disorder and early death in transgenic FVB/N mice overexpressing Alzheimer amyloid precursor proteins. Neuron. 1995;15(5):1203–18.

    Article  CAS  PubMed  Google Scholar 

  26. Wahl F, et al. Neurological and behavioral outcomes of focal cerebral ischemia in rats. Stroke. 1992;23(2):267–72.

    Article  CAS  PubMed  Google Scholar 

  27. Mirza MA, et al. Sexually dimorphic outcomes and inflammatory responses in hypoxic-ischemic encephalopathy. J Neuroinflammation. 2015;12:32.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Denker SP, et al. Macrophages are comprised of resident brain microglia not infiltrating peripheral monocytes acutely after neonatal stroke. J Neurochem. 2007;100(4):893–904.

    Article  CAS  PubMed  Google Scholar 

  29. Ritzel RM, et al. Multiparity improves outcomes after cerebral ischemia in female mice despite features of increased metabovascular risk. Proc Natl Acad Sci U S A. 2017;114(28):E5673-e5682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dienel A, et al. Microthrombi correlates with infarction and delayed neurological deficits after subarachnoid hemorrhage in mice. Stroke. 2020;51(7):2249–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Maeda K, Hata R, Hossmann K-A. Differences in the cerebrovascular anatomy of C57Black/6 and SV129 mice. NeuroReport. 1998;9(7):1317–9.

    Article  CAS  PubMed  Google Scholar 

  32. Goel N, Bale TL. Organizational and activational effects of testosterone on masculinization of female physiological and behavioral stress responses. Endocrinology. 2008;149(12):6399–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen Y, et al. Targeting microglial activation in stroke therapy: pharmacological tools and gender effects. Curr Med Chem. 2014;21(19):2146–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Patel AR, et al. Microglia and ischemic stroke: a double-edged sword. Int J Physiol Pathophysiol Pharmacol. 2013;5(2):73–90.

    PubMed  PubMed Central  Google Scholar 

  35. Arnold AP, Breedlove SM. Organizational and activational effects of sex steroids on brain and behavior: a reanalysis. Horm Behav. 1985;19(4):469–98.

    Article  CAS  PubMed  Google Scholar 

  36. Arnold AP. Y chromosome’s roles in sex differences in disease. Proc Natl Acad Sci U S A. 2017;114(15):3787–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Forsberg LA, et al. Mosaic loss of chromosome Y in peripheral blood is associated with shorter survival and higher risk of cancer. Nat Genet. 2014;46(6):624–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Khan, S.I., et al., Y chromosome, hypertension and cardiovascular disease: is inflammation the answer? Int J Mol Sci, 2019. 20(12).

  39. Teuscher C, et al. Evidence that the Y chromosome influences autoimmune disease in male and female mice. Proc Natl Acad Sci U S A. 2006;103(21):8024–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sun SL, et al. Y chromosome-linked B and NK cell deficiency in mice. J Immunol. 2013;190(12):6209–20.

    Article  CAS  PubMed  Google Scholar 

  41. Faustino JV, et al. Microglial cells contribute to endogenous brain defenses after acute neonatal focal stroke. J Neurosci. 2011;31(36):12992–3001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Benakis C, et al. The role of microglia and myeloid immune cells in acute cerebral ischemia. Front Cell Neurosci. 2014;8:461.

    PubMed  Google Scholar 

  43. Fumagalli S, et al. The ischemic environment drives microglia and macrophage function. Front Neurol. 2015;6:81.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Girard S, et al. Microglia and macrophages differentially modulate cell death after brain injury caused by oxygen-glucose deprivation in organotypic brain slices. Glia. 2013;61(5):813–24.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Iadecola C, Buckwalter MS, Anrather J. Immune responses to stroke: mechanisms, modulation, and therapeutic potential. J Clin Investig. 2020;130(6):2777–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jayaraj RL, et al. Neuroinflammation: friend and foe for ischemic stroke. J Neuroinflammation. 2019;16(1):142.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Appelros P, Stegmayr B, Terent A. Sex differences in stroke epidemiology: a systematic review. Stroke. 2009;40(4):1082–90.

    Article  PubMed  Google Scholar 

  48. Bodhankar S, et al. Role for microglia in sex differences after ischemic stroke: importance of M2. Metab Brain Dis. 2015;30(6):1515–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dotson AL, Offner H. Sex differences in the immune response to experimental stroke: implications for translational research. J Neurosci Res. 2017;95(1–2):437–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Manwani B, McCullough LD. Sexual dimorphism in ischemic stroke: lessons from the laboratory. Womens Health (Lond). 2011;7(3):319–39.

    Article  PubMed  Google Scholar 

  51. Klein SL, Flanagan KL. Sex differences in immune responses. Nat Rev Immunol. 2016;16(10):626–38.

    Article  CAS  PubMed  Google Scholar 

  52. Brockdorff N, Turner BM. Dosage compensation in mammals. Cold Spring Harb Perspect Biol. 2015;7(3):a019406.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Gu L, Walters JR. Evolution of sex chromosome dosage compensation in animals: a beautiful theory, undermined by facts and bedeviled by details. Genome Biol Evol. 2017;9(9):2461–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Berletch JB, et al. Genes that escape from X inactivation. Hum Genet. 2011;130(2):237–45.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Iwase S, et al. A mouse model of X-linked intellectual disability associated with impaired removal of histone methylation. Cell Rep. 2016;14(5):1000–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cabrera Zapata, L.E., et al., X-linked histone H3K27 demethylase Kdm6a regulates sexually dimorphic differentiation of hypothalamic neurons. Cell Mol Life Sci, 2021.

  57. Liang G, et al. Distinct localization of histone H3 acetylation and H3–K4 methylation to the transcription start sites in the human genome. Proc Natl Acad Sci USA. 2004;101(19):7357–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Barski A, et al. High-resolution profiling of histone methylations in the human genome. Cell. 2007;129(4):823–37.

    Article  CAS  PubMed  Google Scholar 

  59. Lassen S, et al. Ischemia reperfusion induces IFN regulatory factor 4 in renal dendritic cells, which suppresses postischemic inflammation and prevents acute renal failure. J Immunol. 2010;185(3):1976–83.

    Article  CAS  PubMed  Google Scholar 

  60. Almuttaqi H, Udalova IA. Advances and challenges in targeting IRF5, a key regulator of inflammation. FEBS J. 2019;286(9):1624–37.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by funding from the National Institutes of Health: NS108779 (Fudong Liu).

Author information

Authors and Affiliations

Authors

Contributions

S.Q., L.D.M., A.P.A, and F.L. designed research; S.Q., A.A.M., C.N. and S.R. performed research; T.W. and S.P.M. contributed to new reagents and data analysis; S.Q. analyzed data; S.Q. and F.L. drafted the manuscript; L.D.M and A.P.A edited the manuscript.

Corresponding author

Correspondence to Fudong Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

All animal experimental procedures were performed in accordance with NIH guidelines for the care and use of laboratory animals and were approved by the Institutional Animal care and use committee of the University of Texas Health Science Center.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 870 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, S., Ngwa, C., Al Mamun, A. et al. X, but not Y, Chromosomal Complement Contributes to Stroke Sensitivity in Aged Animals. Transl. Stroke Res. 14, 776–789 (2023). https://doi.org/10.1007/s12975-022-01070-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-022-01070-z

Keywords

Navigation