Skip to main content

Advertisement

Log in

Extended Ischemic Recovery After Implantation of Human Mesenchymal Stem Cell Aggregates Indicated by Sodium MRI at 21.1 T

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Extended therapeutic application remains a significant issue in the use of stem cell therapies to treat ischemic stroke. Along these lines, neurological recovery in a rodent model of ischemic stroke was evaluated following implantation of human mesenchymal stem cell aggregates (hMSC-agg), labeled with micron-sized particles of iron oxide, directly into the lateral ventricle contralateral to the ischemic lesion hemisphere. Longitudinally, disease progression and response to hMSC-agg therapy were assessed by 1H and 23Na magnetic resonance imaging (MRI) at 21.1 T to investigate cellular localization, migration, and recovery over an extended timeframe. MRI provides quantifiable metrics of tissue status through sodium distributions in addition to traditional proton imaging. Quantitative 23Na MRI revealed a significant decrease of sodium concentrations following hMSC aggregate implantation, indicating recovery of homeostasis. This result correlates positively with extended neurological recovery assessed by behavioral analysis and immunohistochemistry. These findings demonstrate the potential of implanted hMSC aggregate therapy to provide extended treatment for ischemic stroke, as well as the robustness of MRI for monitoring such approaches. This method potentially can be translated to a clinical setting for the assessment of extended cell therapy efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All data used in this study were newly acquired. Relevant data used in preparation of this manuscript are available upon request to either the principal or corresponding author via email. In accordance with the National High Magnetic Field Laboratory FAIR Data Management Plan (www.nationalmaglab.org/about/fair-data), data can be made available for access through the NHMFL publication database.

References

  1. Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, et al. Heart disease and stroke statistics—2017 update: a report from the American Heart Association. Circulation. 2017;135:e146-603. https://doi.org/10.1161/CIR.0000000000000485.

    Article  PubMed  PubMed Central  Google Scholar 

  2. National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. N Engl J Med. 1995;333:1581–7.

    Article  Google Scholar 

  3. Hu H-J, Song M. Disrupted ionic homeostasis in ischemic stroke and new therapeutic targets. J Stroke Cerebrovasc Dis. 2017;26:2706–19. https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.09.011.

    Article  PubMed  Google Scholar 

  4. Madelin G, Lee J-S, Regatte RR, Jerschow A. Sodium MRI: methods and applications. Prog Nucl Magn Reson Spectrosc. 2014;79:14–47. https://doi.org/10.1016/j.pnmrs.2014.02.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Boada FE, Qian Y, Nemoto E, Jovin T, Jungreis C, Jones SC, et al. Sodium MRI and the assessment of irreversible tissue damage during hyper-acute stroke. Transl Stroke Res. 2012;3:236–45. https://doi.org/10.1007/s12975-012-0168-7.

    Article  CAS  PubMed  Google Scholar 

  6. Wey HY, Duong TQ. Multimodal MRI of nonhuman primate stroke. Transl Stroke Res. 2012;84–9.

  7. Wakabayashi K, Nagai A, Sheikh AM, Shiota Y, Narantuya D, Watanabe T, et al. Transplantation of human mesenchymal stem cells promotes functional improvement and increased expression of neurotrophic factors in a rat focal cerebral ischemia model. J Neurosci Res. 2009;88:NA-NA. https://doi.org/10.1002/jnr.22279

  8. Zacharek A, Chen J, Cui X, Li A, Li Y, Roberts C, et al. Angiopoietin1/Tie2 and VEGF/Flk1 induced by MSC treatment amplifies angiogenesis and vascular stabilization after stroke. J Cereb Blood Flow Metab. 2007;27:1684–91.

    Article  CAS  Google Scholar 

  9. Mora-Lee S, Sirerol-Piquer S, GutiéRrez-PéRez M, Gomez-Pinedo U, Roobrouck VD, Ló Pez T, et al. Therapeutic effects of hMAPC and hMSC transplantation after stroke in mice. PLoS One. 2012;7:e43683.

    Article  CAS  Google Scholar 

  10. Li Y, Chen J, Wang L, Lu M, Chopp M. Treatment of stroke in rat with intracarotid administration of marrow stromal cells. Neurology. 2001;56:1666–72.

    Article  CAS  Google Scholar 

  11. Horita Y, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JD. Intravenous administration of glial cell line-derived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in the adult rat. J Neurosci Res. 2006;84:1495–504.

    Article  CAS  Google Scholar 

  12. Chen J, Li Y, Wang Lei, Zhang Z, Lu D, Lu M, et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke. 2001;32:1005–11.

    Article  CAS  Google Scholar 

  13. Napoli E, Borlongan CV. Recent advances in stem cell-based therapeutics for stroke. Transl Stroke Res. 2016;7:452–7.

    Article  Google Scholar 

  14. Crigler L, Robey RC, Asawachaicharn A, Gaupp D, Phinney DG. Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp Neurol. 2006;198:54–64. https://doi.org/10.1016/J.EXPNEUROL.2005.10.029.

    Article  CAS  PubMed  Google Scholar 

  15. Nomura T, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JD. I.V. Infusion of brain-derived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat. Neuroscience. 2005;136:161. https://doi.org/10.1016/J.NEUROSCIENCE.2005.06.062.

    Article  CAS  PubMed  Google Scholar 

  16. Rowart P, Erpicum P, Detry O, Weekers L, Grégoire C, Lechanteur C, et al. Mesenchymal stromal cell therapy in ischemia/reperfusion injury. J Immunol Res. 2015;2015:602597.

    Article  Google Scholar 

  17. NIH Search of: human mesenchymal stem cells | stroke - List Results - ClinicalTrials.gov.

  18. Copland IB, Galipeau J. Death and inflammation following somatic cell transplantation. Semin Immunopathol. 2011;33:535–50.

    Article  Google Scholar 

  19. Sart S, Liu Y, Ma T, Li Y. Microenvironment regulation of pluripotent stem cell-derived neural progenitor aggregates by human mesenchymal stem cell secretome. Tissue Eng Part A. 2014;20:2666–79.

    Article  CAS  Google Scholar 

  20. Teixeira FG, Carvalho MM, Sousa N, Salgado AJ. Mesenchymal stem cells secretome: a new paradigm for central nervous system regeneration? Cell Mol Life Sci. 2013.

  21. Tsai A-C, Liu Y, Yuan X, Ma T. Compaction, fusion, and functional activation of three-dimensional human mesenchymal stem cell aggregate. Tissue Eng Part A. 2015;21:1705–19. https://doi.org/10.1089/ten.TEA.2014.0314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sart S, Tsai A-C, Li Y, Ma T. Three-dimensional aggregates of mesenchymal stem cells: cellular mechanisms, biological properties, and applications. Tissue Eng Part B Rev. 2014;20:365–80. https://doi.org/10.1089/ten.TEB.2013.0537.

    Article  PubMed  Google Scholar 

  23. Guo L, Ge J, Zhou Y, Wang S, Zhao RCH, Wu Y. Three-dimensional spheroid-cultured mesenchymal stem cells devoid of embolism attenuate brain stroke injury after intra-arterial injection. Stem Cells Dev. 2014;23:978–89.

    Article  CAS  Google Scholar 

  24. Yuan X, Tsai A-C, Farrance I, Rowley JA, Ma T. Aggregation of culture expanded human mesenchymal stem cells in microcarrier-based bioreactor. Biochem Eng J. 2018;131:39–46. https://doi.org/10.1016/j.bej.2017.12.011.

    Article  CAS  PubMed  Google Scholar 

  25. Tsai A-C, Liu Y, Yuan X, Chella R, Ma T. Aggregation kinetics of human mesenchymal stem cells under wave motion. Biotechnol J. 2017;12:1600448. https://doi.org/10.1002/biot.201600448.

    Article  CAS  Google Scholar 

  26. Bang OY, Moon GJ, Kim DH, Lee JH, Kim S, Son JP, et al. Stroke induces mesenchymal stem cell migration to infarcted brain areas via CXCR4 and C-met signaling the STARTING-2 trial investigators. Transl Stroke Res. 2017;8:449–60.

    Article  CAS  Google Scholar 

  27. Ramos-Cabrer P, Hoehn M. MRI stem cell tracking for therapy in experimental cerebral ischemia. Transl Stroke Res. 2012;3:22–35.

    Article  Google Scholar 

  28. Rosenberg JT, Sellgren KL, Sachi-Kocher A, Bejarano FC, Baird MA, Davidson MW, et al. Magnetic resonance contrast and biological effects of intracellular superparamagnetic iron oxides on human mesenchymal stem cells with long-term culture and hypoxic exposure. Cytotherapy. 2013;15:307–22.

    Article  CAS  Google Scholar 

  29. Naumova AV, Akulov AE, Khodanovich MY, Yarnykh VL. High-resolution three-dimensional macromolecular proton fraction mapping for quantitative neuroanatomical imaging of the rodent brain in ultra-high magnetic fields. Neuroimage. 2017;147:985–93.

    Article  Google Scholar 

  30. Yang Y, Salayandia VM, Thompson JF, Yang LY, Estrada EY, Yang Y. Attenuation of acute stroke injury in rat brain by minocycline promotes blood-brain barrier remodeling and alternative microglia/ macrophage activation during recovery. J Neuroinflammation. 2015;12:26.

    Article  Google Scholar 

  31. He R, Moisan A, Detante O, Rémy C, Krainik A, Barbier EL, et al. Evaluation of parametric response mapping to assess therapeutic response to human mesenchymal stem cells after experimental stroke. Cell Transplant. 2017;26:1462–71.

    Article  Google Scholar 

  32. Liu Y, Yuan X, Muñoz N, Logan TM, Ma T. Commitment to aerobic glycolysis sustains immunosuppression of human mesenchymal stem cells. Stem Cells Transl Med. 2018;8:93–106. https://doi.org/10.1002/sctm.18-0070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989;20:84–91.

    Article  CAS  Google Scholar 

  34. Tajiri N, Dailey T, Metcalf C, Mosley YI, Lau T, Staples M, et al. In vivo animal stroke models: a rationale for rodent and non-human primate models. Transl Stroke Res. 2013;4:308–21.

    Article  Google Scholar 

  35. Fu R, Brey WW, Shetty K, Gorõkov P, Saha S, Long JR, et al. Ultra-wide bore 900 MHz high-resolution NMR at the National High Magnetic Field Laboratory. J Magn Reson. 2005;177:1–8.

    Article  CAS  Google Scholar 

  36. Iglesias JE, Crampsie S, Strand C, Tachrount M, Thomas DL, Holton JL. Effect of Fluorinert on the Histological Properties of Formalin-Fixed Human Brain Tissue. J Neuropathol Exp Neurol. 2018;77:1085–90. https://doi.org/10.1093/jnen/nly098.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Schaar KL, Brenneman MM, Savitz SI. Functional assessments in the rodent stroke model. Exp Transl Stroke Med. 2010;2:13. https://doi.org/10.1186/2040-7378-2-13.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Schallert T, Fleming SM, Leasure JL, Tillerson JL, Bland ST. CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury. Neuropharmacology. 2000;39:777–87. https://doi.org/10.1016/S0028-3908(00)00005-8.

    Article  CAS  PubMed  Google Scholar 

  39. Pellow S, Chopin P, File SE, Briley M. Validation of open : closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods. 1985;14:149–67. https://doi.org/10.1016/0165-0270(85)90031-7.

    Article  CAS  PubMed  Google Scholar 

  40. Crawley JN. Exploratory behavior models of anxiety in mice. Neurosci Biobehav Rev. 1985;9:37–44.

    Article  CAS  Google Scholar 

  41. Belzung C, Griebel G. Measuring normal and pathological anxiety-like behaviour in mice: a review. Behav Brain Res. 2001;125:141–9.

    Article  CAS  Google Scholar 

  42. Seibenhener ML, Wooten MC. Use of the open field maze to measure locomotor and anxiety-like behavior in mice. J Vis Exp. 2015;96:e52434.

    Google Scholar 

  43. Yuan X, Rosenberg JT, Liu Y, Grant SC, Ma T. Aggregation of human mesenchymal stem cells enhances survival and efficacy in stroke treatment. Cytotherapy. 2019;21:1033–48. https://doi.org/10.1016/j.jcyt.2019.04.055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sart S, Bejarano FC, Baird MA, Yan Y, Rosenberg JT, Ma T, et al. Intracellular labeling of mouse embryonic stem cell–derived neural progenitor aggregates with micron-sized particles of iron oxide. Cytotherapy. 2015;17:98–111.

    Article  CAS  Google Scholar 

  45. Imitola J, Raddassi K, Park KI, Mueller F-J, Nieto M, Teng YD, et al. Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1α/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci. 2004;101:18117–22. https://doi.org/10.1073/PNAS.0408258102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sart S, Ma T, Li Y. Preconditioning stem cells for in vivo delivery. Biores Open Access. 2014;3:137–49.

    Article  CAS  Google Scholar 

  47. Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol. 2010;119:7–35. https://doi.org/10.1007/s00401-009-0619-8.

    Article  PubMed  Google Scholar 

  48. Vonderwalde I, Azimi A, Rolvink G, Ahlfors J-E, Shoichet MS, Morshead CM. Transplantation of directly reprogrammed human neural precursor cells following stroke promotes synaptogenesis and functional recovery. Transl Stroke Res. 2020;11:93–107. https://doi.org/10.1007/s12975-019-0691-x.

    Article  PubMed  Google Scholar 

  49. Zimatkin SM, Karnyushko OA. Expression of doublecortin and neun in developing neurons in the rat cerebellum. Neurosci Behav Physiol. 2017;47:122–6. https://doi.org/10.1007/s11055-016-0374-y.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This paper is dedicated to the memory of Professor Teng Ma, director of the cell and tissue engineering laboratory at FAMU-FSU College of Engineering, who suddenly passed away in May of 2019. S.C.G. acknowledges funding from NIH (RO1-NS102395). S.H. thanks NIH for financial support through a Ruth Kirschstein National Research Service Award (F31 NS115409).

Funding

S.C.G. acknowledges funding from NIH (RO1-NS102395). S.H. thanks NIH for financial support through a Ruth Kirschstein National Research Service Award (F31 NS115409). The National High Magnetic Field Laboratory is supported by the National Science Foundation through the NSF (DMR-1644779) and State of Florida.

Author information

Authors and Affiliations

Authors

Contributions

All authors designed the study and critically revised and approved the final version of the manuscript. S.H and F.A.B. contributed equally to this manuscript. S.H. performed surgeries with assistance from J.T.R. S.H. and F.A.B. performed behavioral assessment, MRI scans, data analysis, and statistical analysis and wrote the manuscript, with editing by S.C.G. X.Y. performed cell culture work under the supervision of T.M. K.X. and J.Y.L performed histological assessment under the supervision of C.V.B. S.C.G, C.V.B, T.M, and J.T.R conceived the project.

Corresponding author

Correspondence to Samuel C. Grant.

Ethics declarations

Disclaimer

The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Conflict of Interest

Ceasar Borlongan serves on the editorial board of Translational Stroke Research. All other authors report no conflicts of interest with respect to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 373 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Helsper, S., Bagdasarian, F.A., Yuan, X. et al. Extended Ischemic Recovery After Implantation of Human Mesenchymal Stem Cell Aggregates Indicated by Sodium MRI at 21.1 T. Transl. Stroke Res. 13, 543–555 (2022). https://doi.org/10.1007/s12975-021-00976-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-021-00976-4

Keywords

Navigation