Skip to main content

Advertisement

Log in

A Novel Plant-Produced Asialo-rhuEPO Protects Brain from Ischemic Damage Without Erythropoietic Action

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Mammalian cell-produced recombinant human erythropoietin (rhuEPOM) has been shown to be a multimodal neuroprotectant targeting an array of key pathological mechanisms in experimental stroke models. However, the rhuEPOM clinical trials were terminated due to increased risk of thrombosis, largely ascribed to its erythropoietic function. We recently took advantage of a plant-based expression system lacking sialylation capacity to produce asialo-rhuEPOP, a rhuEPO derivative without sialic acid residues. In the present study, we proved that asialo-rhuEPOP is non-erythropoietic by repeated intravenous injection (44 μg/kg bw) in mice showing no increase in hemoglobin levels and red blood cell counts, and confirmed that it is non-immunogenic by measuring humoral response after immunizing the mice. We demonstrate that it is neuroprotective in a cerebral ischemia and reperfusion (I/R) mouse model, exhibiting ~ 50% reduction in cerebral infarct volume and edema, and significant improvement in neurological deficits and histopathological outcome. Our studies further revealed that asialo-rhuEPOP, like rhuEPOM, displays pleiotropic neuroprotective effects, including restoring I/R-interrupted mitochondrial fission and fusion proteins, preventing I/R injury-induced increase in mitophagy and autophagy markers, and inhibiting apoptosis to benefit nerve cell survival. Most importantly, asialo-rhuEPOP lacking erythropoietic activity and immunogenicity holds great translational potential as a multimodal neuroprotectant for stroke treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data associated with this study are present in the paper, which have been confirmed by authors to comply with field standards.

Code Availability

Software application and custom code used to support the published claims have been confirmed by authors to comply with field standards.

References

  1. Barthels D, Das H. Current advances in ischemic stroke research and therapies. BBA – Mol Basis Dis. 2020;1866:165260.

    Article  CAS  Google Scholar 

  2. Eltzschig HK, Eckle T. Ischemia and reperfusion–from mechanism to translation. Nat Med. 2011;17:1391–401.

    Article  CAS  PubMed  Google Scholar 

  3. Nour M, Scalzo F, Liebeskind DS. Ischemia-reperfusion injury in stroke. Interv Neurol. 2013;1:185–99.

    PubMed  Google Scholar 

  4. Muresanu DF, Strilciuc S, Stan A. Current drug treatment of acute ischemic stroke: challenges and opportunities. CNS Drugs. 2019;33:841–7.

    Article  CAS  PubMed  Google Scholar 

  5. Rogalewski A, Schneider A, Ringelstein EB, Schabitz W. Toward a multimodal neuroprotective treatment of stroke. Stroke. 2006;37:1129–36.

    Article  PubMed  Google Scholar 

  6. Zhang L, Zhang ZG, Chopp M. The neurovascular unit and combination treatment strategies for stroke. Trends Pharmacol Sci. 2012;33:415–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liang LJ, Yang JM, Jin XC. Cocktail treatment, a promising strategy to treat acute cerebral ischemic stroke. Med Gas Res. 2016;6:33–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jelkmann W. Erythropoietin: structure, control of production, and function. Physiol Rev. 1992;72:449–89.

    Article  CAS  PubMed  Google Scholar 

  9. Sakanaka M, Wen TC, Matsuda S, Masuda S, Morishita E, Nagao M, et al. In vivo evidence that erythropoietin protects neurons from ischemic damage. Proc Natl Acad Sci USA. 1998;95:4635–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Patel NS, Nandra KK, Thiemermann C. Bench-to-bedside review: Erythropoietin and its derivatives as therapies in critical care. Crit Care. 2012;16:229.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Souvenir R, Doycheva D, Zhang JH, Tang J. Erythropoietin in stroke therapy: friend or foe. Curr Med Chem. 2015;22:1205–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brines M, Cerami A. Emerging biological roles for erythropoietin in the nervous system. Nat Rev Neurosci. 2005;6:484–94.

    Article  CAS  PubMed  Google Scholar 

  13. Brines M, Cerami A. Erythropoietin-mediated tissue protection: reducing collateral damage from the primary injury response. J Intern Med. 2008;264:405–32.

    Article  CAS  PubMed  Google Scholar 

  14. Solling C. Organ-protective and immunomodulatory effects of erythropoietin - an update on recent clinical trials. Basic Clin Pharmacol Toxicol. 2011;110:113–21.

    Article  PubMed  Google Scholar 

  15. Ehrenreich H, Weissenborn K, Prange H, Schneider D, Weimar C, Wartenberg K, et al. Recombinant human erythropoietin in the treatment of acute ischemic stroke. Stroke. 2009;40:e647–56.

    Article  CAS  PubMed  Google Scholar 

  16. Lippi G, Franchini M, Favaloro EJ. Thrombotic complications of erythropoiesis-stimulating agents. Semin Thromb Hemost. 2010;36:537–49.

    Article  CAS  PubMed  Google Scholar 

  17. Brines M, Patel NS, Villa P, Brines C, Mennini T, De Paola M, et al. Nonerythropoietic, tissue-protective peptides derived from the tertiary structure of erythropoietin. Proc Natl Acad Sci USA. 2008;105:10925–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pankratova S, Kiryushko D, Sonn K, Soroka V, Kohler LB, Rathje M, et al. Neuroprotective properties of a novel, non-hematopoietic agonist of the erythropoietin receptor. Brain. 2010;133:2281–94.

    Article  PubMed  Google Scholar 

  19. Hermanson T, Bennett CL, Macdougall IC. Peginesatide for the treatment of anemia due to chronic kidney disease - an unfulfilled promise. Expert Opin Drug Saf. 2016;15:1421–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Erbayraktar S, Grasso G, Sfacteria A, Xie Q, Coleman T, Kreilgaard M, et al. Asialoerythropoietin is a nonerythropoietic cytokine with broad neuroprotective activity in vivo. Proc Natl Acad Sci USA. 2003;100:6741–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Leist M, Ghezzi P, Grasso G, Bianchi R, Villa P, Fratelli M, et al. Derivatives of erythropoietin that are tissue protective but not erythropoietic. Science. 2004;305:239–42.

    Article  CAS  PubMed  Google Scholar 

  22. Okada T, Sawada T, Kubota K. Asialoerythropoietin has strong renoprotective effects against ischemia-reperfusion injury in a murine model. Transplantation. 2007;84:504–10.

    Article  CAS  PubMed  Google Scholar 

  23. Gan Y, Xing J, Jing Z, Stetler A, Zhand F, Luo Y, et al. Mutant erythropoietin without erythropoietic activity is neuroprotective against ischemic brain injury. Stroke. 2012;43:3071–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Price CD, Yang Z, Karlnoski R, Kumar D, Chaparro R, Camporesi EM. Effect of continuous infusion of asialoerythropoietin on short-term changes in infarct volume, penumbra apoptosis and behaviour following middle cerebral artery occlusion in rats. Clin Exp Pharmacol Physiol. 2010;37:185–92.

    Article  CAS  PubMed  Google Scholar 

  25. Wang L, Zhang Z, Wang Y, Zhang R, Chopp M. Treatment of stroke with erythropoietin enhances neurogenesis and agiogenesis and improves neurological functions in rats. Stroke. 2004;35:1732–7.

    Article  CAS  PubMed  Google Scholar 

  26. Yamashita T, Nonoguchi N, Ikemoto T, Miyatake S, Kuroiwa T. Asialoerythropoietin attenuates neuronal cell death in the hippocampal CA1 region after transient forebrain ischemia in a gerbil model. Neurol Res. 2010;32:957–62.

    Article  CAS  PubMed  Google Scholar 

  27. Ishii T, Asai T, Oyama D, Fukuta T, Yasuda N, Shimizu K, et al. Amelioration of cerebral ischemia-reperfusion injury based on liposomal drug delivery system with asialo-erythropoietin. J Control Release. 2012;160:81–7.

    Article  CAS  PubMed  Google Scholar 

  28. Weise A, Altmann F, Rodriguez-Franco M, Sjoberg ER, Baumer W, Launhardt H, et al. High level expression of secreted complex glycosylated recombinant human erythropoietin in the Physcomitrella Δ-fuc-t Δ-xyl-t mutant. Plant Biotechnol J. 2007;5:389–401.

    Article  CAS  PubMed  Google Scholar 

  29. Jelkmann W. Recombinant EPO production-points the nephrologist should know. Nephrol Dial Transplant. 2007;22:2749–53.

    Article  PubMed  Google Scholar 

  30. Kittur FS, Bah M, Archer-Hartmann S, Hung C-Y, Azadi P, Ishihara M, et al. Cytoprotective effect of recombinant human erythropoietin produced in transgenic tobacco plants. PLoS ONE. 2013;8:e76468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ma JK, Drake PM, Christou P. The production of recombinant pharmaceutical proteins in plants. Nat Rev Genet. 2003;4:794–805.

    Article  CAS  PubMed  Google Scholar 

  32. Arthur E, Kittur FS, Lin Y, Hung C-Y, Sane DC, Xie J. Plant-produced asialo-erythropoietin restores pancreatic beta-cell function by suppressing mammalian sterile-20-like kinase (MST1) and caspase-3 activation. Front Pharmacol. 2017;8:208.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kittur FS, Lin Y, Arthur E, Hung C-Y, Li PA, Sane DC, et al. Recombinant asialoerythropoetin protects HL-1 cardiomyocytes from injury via suppression of Mst1 activation. Biochem Biophys Rep. 2019;17:157–68.

    PubMed  PubMed Central  Google Scholar 

  34. Andreux PA, Houtkooper RH, Auwerx J. Pharmacological approaches to restore mitochondrial function. Nat Rev Drug Discov. 2013;12:465–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Klein SL, Flanagan KL. Sex differences in immune responses. Nat Rev Immunol. 2016;16:626–38.

    Article  CAS  PubMed  Google Scholar 

  36. Chargelegue D, Vine ND, van Dalleweerd CD, Drake PMW, Ma J. A murine monoclonal antibody produced in transgenic plants with plant-specific glycans is not immunogenic in mice. Transgenic Res. 2000;9:187–94.

    Article  CAS  PubMed  Google Scholar 

  37. Haines BA, Mehta SL, Pratt SM, Warden CH, Li PA. Deletion of mitochondrial uncoupling protein-2 increases ischemic brain damage after transient focal ischemia by altering gene expression patterns and enhancing inflammatory cytokines. J Cereb Blood Flow Metab. 2010;30:1825–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989;20:84–9.

    Article  CAS  PubMed  Google Scholar 

  39. Mehta SL, Kumari S, Mendelev N, Li PA. Selenium preserves mitochondrial function, stimulates mitochondrial biogenesis, and reduces infarct volume after focal cerebral ischemia. BMC Neurosci. 2012;13:79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wright DG, Wright EC, Narva AS, Noguchi CT, Rogers PW. Association of erythropoietin dose and route of administration with clinical outcomes for patients on hemodialysis in the Unites States. Clin J Am Soc Nephro. 2015;10:1822–30.

    Article  CAS  Google Scholar 

  41. Jelkmann W. Efficacy of recombinant erythropietins: is there unity of international standards? Nephrol Dial Transplant. 2009;24:1366–8.

    Article  CAS  PubMed  Google Scholar 

  42. Simon F, Floros N, Ibing W, Schelzig H, Knapsis A. Neurotherapeutic potential of erythropoietin after ischemic injury of the central nervous system. Neural Regen Res. 2019;14:1309–12.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kittur FS, Hung C-Y, Zhu CS, Shajahanm A, Azadi P, Thomas MD, et al. Glycoengineering tobacco plants to stably express recombinant human erythropoietin with different N-glycan profiles. Int J Biol Macromol. 2020;157:158–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jin C, Altmann F, Strasser R, Mach L, Schahs M, Kunert R, et al. A plant-derived human monoclonal antibody induces an anti-carbohydrate immune response in rabbits. Glycobiology. 2008;18:235–41.

    Article  CAS  PubMed  Google Scholar 

  45. Ward BJ, Landry N, Trépanier S, Mercier G, Dargis M, Couture M, et al. Human antibody response to N-glycans present on plant-made influenza virus-like particle (VLP) vaccines. Vaccine. 2014;32:6098–106.

    Article  CAS  PubMed  Google Scholar 

  46. Wang X, Jiang D, Shi J, Yang D. Expression of α-1,6-fucosyltransferase (FUT8) in rice grain and immunogenicity evaluation of plant-specific glycans. J Biotechnol. 2017;20:111–21.

    Article  Google Scholar 

  47. Wolf HK, Buslei R, Schmidt-Kastner R, Schmidt-Kastner PK, Pietsch T, Wiestler OD, et al. NeuN: a useful neuronal marker for diagnostic histopathology. J Histochem Cytochem. 1996;44:1167–71.

    Article  CAS  PubMed  Google Scholar 

  48. Balog J, Mehta SL, Vemuganti R. Mitochondrial fission and fusion in secondary brain damage after CNS insults. J Cereb Blood Flow Metab. 2016;36:2022–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu F, Lu J, Manaenko A, Tang J, Hu Q. Mitochondria in ischemic stroke: new insight and implications. Aging Dis. 2018;9:924–37.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Cheung EC, Mcbride HM, Slack RS. Mitochnodrial dynamics in the regulation of neuronal cell death. Apoptosis. 2007;12:979–92.

    Article  PubMed  Google Scholar 

  51. Otera H, Mihara K. Mitochondrial dynamics: functional link with apoptosis. Intl J Cell Biol. 2012;2012:821676.

    Article  Google Scholar 

  52. Kumar R, Bukowski MJ, Wider JM, Reynolds CA, Calo L, Lepore B, et al. Mitochondrial dynamics following global cerebral ischemia. Mol Cell Neurosci. 2016;76:68–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Burman JL, Pickles S, Wang C, Sekine S, Vargas J, Zhang Z, et al. Mitochondrial fission facilitates the selective mitophagy of protein aggregates. J Cell Biol. 2017;216:3231–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ma K, Chen G, Li W, Keep O, Zhu Y, Quan C. Mitophagy, mitochondrial homeostasis, and cell fate. Front Cell Dev Biol. 2020;8:467.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sun Y, Zhu Y, Zhong X, Chen X, Wang J, Ying G. Crosstalk between autophagy and cerebral ischemia. Front Neurosci. 2019;12:1022.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol. 2009;10:458–67.

    Article  CAS  PubMed  Google Scholar 

  57. Barth S, Glick D, Macleod KF. Autophagy: assays and artifacts. J Pathol. 2010;221:117–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Levine B, Liu R, Dong X, Zhong Q. Beclin orthologs: integrative hubs of cell signaling, membrane trafficking, and physiology. Trends Cell Biol. 2015;25:533–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gavrieli Y, Sherman Y, Ben-Sasson SA. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol. 1992;119:493–501.

    Article  CAS  PubMed  Google Scholar 

  60. Ehrenreich H, Aust C, Krampe H, Jahn H, Jacob S, Hermann M, et al. Erythropoietin: novel approaches to neuroprotection in human brain disease. Metab Brain Dis. 2004;19:195–206.

    Article  CAS  PubMed  Google Scholar 

  61. Bardor M, Fareeuw C, Fitchette AC, Gilbert D, Galas L, Trottein F, et al. Immunoreactivity of two typical plant glycol-epitopes, core α(1,3)-fucose and core xylose. Glycobiology. 2003;13:427–34.

    Article  CAS  PubMed  Google Scholar 

  62. Rup B, Alon S, Amit-Cohen BC, Almon EB, Chertkoff R, Tekoah Y, et al. Immunogenicity of glycans on biotherapeutic drugs produced in plant expression systems-the taliglucerase alfa story. PLoS ONE. 2017;12:e0186211.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Debierre-Grockiego F. Anti-apoptotic role of STAT5 in haematopoietic cells and in the pathogenesis of malignancies. Apoptosis. 2004;9:717–28.

    Article  CAS  PubMed  Google Scholar 

  64. Bonni A, Brunet A, West AE, Datta SR, Takasu MA, Greenberg ME. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science. 1999;286:1356–62.

    Article  Google Scholar 

  65. Kennedy SG, Kandel ES, Cross TK, Hay N. Akt/protein kinase B inhibits cell death by preventing the release of cyt c from mitochondria. Mol Cell Biol. 1999;19:5800–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Szabo A, Sumegi K, Fekete K, Hocsak E, Debreceni B, Setalo G Jr, et al. Activation of mitochondrial fusion provides a new treatment for mitochondria-related diseases. Biochem Pharmacol. 2018;150:86–96.

    Article  CAS  PubMed  Google Scholar 

  67. Ong SB, Hall AR, Dongworth RK, Kalkhoran S, Pyakurel A, Scorrano L, et al. Akt protects the heart against ischaemia-reperfusion injury by modulating mitochondrial morphology. Thromb Haemost. 2015;113:513–21.

    Article  PubMed  Google Scholar 

  68. Shi R, Weng J, Zhao L, Li XM, Gao TM, Kong J. Excessive autophagy contributes to neuron death in cerebral ischemia. CNS Neurosci Ther. 2012;18:250–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cook SJ, Stuart K, Gilley R, Sale MJ. Control of cell death and mitochondrial fission by ERK1/2 MAP kinase signaling. FEBS J. 2017;284:4177–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Philo JS, Aoki KH, Arakawa T, Narhi LO, Wen J. Dimerization of the extracellular domain of the erythropoietin (EPO) receptor by EPO: one high-affinity and one low-affinity interaction. Biochemistry. 1996;35:1681–91.

    Article  CAS  PubMed  Google Scholar 

  71. Darling RJ, Kuchibhotla U, Glaesner W, Micanovic R, Witcher DR, Beals JM. Glycosylation of erythropoietin affects receptor binding kinetics: role of electrostatic interactions. Biochemistry. 2002;41:14524–31.

    Article  CAS  PubMed  Google Scholar 

  72. Brines M, Grasso G, Fiordaliso F, Sfacteria A, Ghezzi P, Fratelli M, et al. Erythropoietin mediates tissue protection through an erythropoietin and common beta-subunit heteroreceptor. Proc Natl Acad Sci USA. 2004;101:14907–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ostrowski D, Heinrich R. Alternative erythropoietin receptors in the nervous system. J Clin Med. 2018;7:24.

    Article  PubMed Central  Google Scholar 

  74. Shing KSCT, Broughton SE, Nero TL, Gillinder K, Ilsley MD, Ramshaw H, et al. EPO does not promote interaction between the erythropoietin and beta-common receptors. Sci Rep. 2018;8:12457.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Qingping He for the help with immunofluorescence assay.

Funding

This work was supported by the National Institute of General Medical Sciences grant SC1GM111178 to Jiahua Xie.

Author information

Authors and Affiliations

Authors

Contributions

F.S.K, D.C.S, P.A.L, and J.X. designed research; M.H, F.S.K, C.-Y.H, and J.Z. performed the experiments; M.H, F.S.K, P.A.L., J.Z. L.J., D.C.S, and J.X. analyzed the data. M.H, F.S.K., and J.X. drafted the manuscript with input from all authors.

Corresponding authors

Correspondence to P. Andy Li or Jiahua Xie.

Ethics declarations

Ethics Approval

This study was conducted in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals and the Association and Accreditation of Laboratory Animal Care International guidelines and under the authorization of the Institutional Animal Care and Use Committee at the North Carolina Central University, Durham, NC, USA.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

JX, FK, and C-Y H are inventors of filed patent “Methods for the production of cytoprotective asialo-erythropoietin in plants and its purification from plant tissues” (PCT NUMBER: US2013031382, pending).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, M., Kittur, F.S., Hung, CY. et al. A Novel Plant-Produced Asialo-rhuEPO Protects Brain from Ischemic Damage Without Erythropoietic Action. Transl. Stroke Res. 13, 338–354 (2022). https://doi.org/10.1007/s12975-021-00943-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-021-00943-z

Keywords

Navigation