Skip to main content
Log in

Robotic Assessment of Upper Limb Function in a Nonhuman Primate Model of Chronic Stroke

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Stroke is a leading cause of death and disability worldwide and survivors are frequently left with long-term disabilities that diminish their autonomy and result in the need for chronic care. There is an urgent need for the development of therapies that improve stroke recovery, as well as accurate and quantitative tools to measure function. Nonhuman primates closely resemble humans in neuroanatomy and upper limb function and may be crucial in randomized pre-clinical trials for testing the efficacy of stroke therapies. To test the feasibility of robotic assessment of motor function in a NHP model of stroke, two cynomolgus macaques were trained to perform a visually guided reaching task and were also assessed in a passive stretch task using the Kinarm robot. Strokes were then induced in these animals by transiently occluding the middle cerebral artery, and their motor performance on the same tasks was assessed after recovery. Relative to pre-stroke performance, post-stroke hand movements of the affected limb became slower and less accurate. Regression analyses revealed both recovered and compensatory movements to complete movements in different spatial directions. Lastly, we noted decreased range of motion in the elbow joint of the affected limb post-stroke associated with spasticity during passive stretch. Taken together, these studies highlight that sensorimotor deficits in reaching movements following stroke in cynomolgus macaques resemble those in human patients and validate the use of robotic assessment tools in a nonhuman primate model of stroke for identifying and characterizing such deficits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Benjamin EJ, Callaway CW, Chamberlain AM, et al. Heart disease and stroke statistics—2018 update: a report from the American Heart Association. Circulation. 2018;137:e67–e492.

    Article  PubMed  Google Scholar 

  2. Langhorne P, Coupar F, Pollock A. Motor recovery after stroke: a systematic review. Lancet Neurol. 2009;8:741–54.

    Article  PubMed  Google Scholar 

  3. Hodgson C. Prevalence and disabilities of community-living seniors who report the effects of stroke. CMAJ Can Med Assoc J. 1998;159:S9–S14.

    Google Scholar 

  4. Lai S-M, Studenski S, Duncan PW, et al. Persisting consequences of stroke measured by the Stroke Impact Scale. Stroke. 2002;33:1840–4.

    Article  PubMed  Google Scholar 

  5. Dobkin BH. Rehabilitation after Stroke. N Engl J Med. 2005;352:1677–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Boake C, Noser EA, Ro T, Baraniuk S, Gaber M, Johnson R, et al. Constraint-induced movement therapy during early stroke rehabilitation. Neurorehabil Neural Repair. 2007;21:14–24.

    Article  PubMed  Google Scholar 

  7. Murphy TH, Corbett D. Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci. 2009;10:861–72.

    Article  CAS  PubMed  Google Scholar 

  8. Carmichael ST. Rodent models of focal stroke: size, mechanism, and purpose. NeuroRX. 2005;2:396–409.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Howells DW, Porritt MJ, Rewell SS, et al. Different strokes for different folks: the rich diversity of animal models of focal cerebral ischemia. J Cereb Blood Flow Metab. 2010;30:1412–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cook DJ, Tymianski M. Nonhuman primate models of stroke for translational neuroprotection research. Neurotherapeutics. 2012;9:371–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stroke Therapy Academic Industry Roundtable (STAIR). Recommendations for standards regarding preclinical neuroprotective and restorative drug development. Stroke. 1999;30:2752–8.

    Google Scholar 

  12. Courtine G, Bunge MB, Fawcett JW, Grossman RG, Kaas JH, Lemon R, et al. Can experiments in nonhuman primates expedite the translation of treatments for spinal cord injury in humans? Nat Med. 2007;13:561–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fisher M, Feuerstein G, Howells DW, Hurn PD, Kent TA, Savitz SI, et al. Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke. 2009;40:2244–50.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tagaya M, Liu K-F, Copeland B, Seiffert D, Engler R, Garcia JH, et al. DNA scission after focal brain ischemia. Stroke. 1997;28:1245–54.

    Article  CAS  PubMed  Google Scholar 

  15. Del Zoppo GJ, Copeland BR, Harker LA, et al. Experimental acute thrombotic stroke in baboons. Stroke. 1986;17:1254–65.

    Article  PubMed  Google Scholar 

  16. West GA, Golshani KJ, Doyle KP, Lessov NS, Hobbs TR, Kohama SG, et al. A new model of cortical stroke in the rhesus macaque. J Cereb Blood Flow Metab. 2009;29:1175–86.

    Article  PubMed  Google Scholar 

  17. Cook DJ, Teves L, Tymianski M. Treatment of stroke with a PSD-95 inhibitor in the gyrencephalic primate brain. Nature. 2012;483:213–7.

    Article  CAS  PubMed  Google Scholar 

  18. Gowland C, Stratford P, Ward M, Moreland J, Torresin W, van Hullenaar S, et al. Measuring physical impairment and disability with the Chedoke-McMaster Stroke Assessment. Stroke. 1993;24:58–63.

    Article  CAS  PubMed  Google Scholar 

  19. Sanford J, Moreland J, Swanson LR, Stratford PW, Gowland C. Reliability of the Fugl-Meyer assessment for testing motor performance in patients following stroke. Phys Ther. 1993;73:447–54.

    Article  CAS  PubMed  Google Scholar 

  20. Lyden P, Brott T, Tilley B, et al. Improved reliability of the NIH stroke scale using video training. NINDS TPA Stroke Study Group. Stroke. 1994;25:2220–6.

    Article  CAS  PubMed  Google Scholar 

  21. Banks JL, Marotta CA. Outcomes validity and reliability of the modified Rankin scale: implications for stroke clinical trials. Stroke. 2007;38:1091–6.

    Article  PubMed  Google Scholar 

  22. Scott SH, Dukelow SP. Potential of robots as next-generation technology for clinical assessment of neurological disorders and upper-limb therapy. J Rehabil Res Dev. 2011;48:335–53.

    Article  PubMed  Google Scholar 

  23. Semrau JA, Herter TM, Scott SH, et al. Robotic identification of kinesthetic deficits after stroke. Stroke. 2013;44:3414–21.

    Article  PubMed  Google Scholar 

  24. Dovat L, Lambercy O, Salman B, Johnson V, Milner T, Gassert R, et al. A technique to train finger coordination and independence after stroke. Disabil Rehabil Assist Technol. 2010;5:279–87.

    Article  PubMed  Google Scholar 

  25. Colombo R, Sterpi I, Mazzone A, et al. Measuring changes of movement dynamics during robot-aided neurorehabilitation of stroke patients. IEEE Trans Neural Syst Rehabil Eng. 2009;18:75–85.

    Article  PubMed  Google Scholar 

  26. Balasubramanian S, Melendez-Calderon A, Burdet E. A robust and sensitive metric for quantifying movement smoothness. IEEE Trans Biomed Eng. 2011;59:2126–36.

    Article  PubMed  Google Scholar 

  27. Coderre AM, Zeid AA, Dukelow SP, et al. Assessment of upper-limb sensorimotor function of subacute stroke patients using visually guided reaching. Neurorehabil Neural Repair. 2010;24:528–41.

    Article  PubMed  Google Scholar 

  28. Simmatis L, Krett J, Scott SH, Jin AY. Robotic exoskeleton assessment of transient ischemic attack. PLoS One. 2017;12:e0188786.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Findlay JM, Macdonald RL, Weir BKA, Grace MGA. Surgical manipulation of primate cerebral arteries in established vasospasm. J Neurosurg. 1991;75:425–32.

    Article  CAS  PubMed  Google Scholar 

  30. Kelly-Hayes M, Wolf PA, Kase CS, Gresham GE, Kannel WB, D’Agostino RB. Time course of functional recovery after stroke: the Framingham study. Neurorehabil Neural Repair. 1989;3:65–70.

    Article  Google Scholar 

  31. Jørgensen HS, Nakayama H, Raaschou HO, Vive-Larsen J, Støier M, Olsen TS. Outcome and time course of recovery in stroke. Part II: Time course of recovery. The Copenhagen Stroke Study. Arch Phys Med Rehabil. 1995;76:406–12.

    Article  PubMed  Google Scholar 

  32. Duncan PW, Goldstein LB, Matchar D, Divine GW, Feussner J. Measurement of motor recovery after stroke. Outcome assessment and sample size requirements. Stroke. 1992;23:1084–9.

    Article  CAS  PubMed  Google Scholar 

  33. Mostafavi SM, Dukelow SP, Glasgow JI, et al. Reduction of stroke assessment time for visually guided reaching task on KINARM exoskeleton robot. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2014, pp. 5296–5299.

  34. Otaka E, Otaka Y, Kasuga S, Nishimoto A, Yamazaki K, Kawakami M, et al. Clinical usefulness and validity of robotic measures of reaching movement in hemiparetic stroke patients. J NeuroEng Rehabil. 2015;12:66.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gregson JM, Leathley M, Moore AP, Sharma AK, Smith TL, Watkins CL. Reliability of the tone assessment scale and the modified ashworth scale as clinical tools for assessing poststroke spasticity. Arch Phys Med Rehabil. 1999;80:1013–6.

    Article  CAS  PubMed  Google Scholar 

  36. Ansari DNN, Naghdi S, Hasson S, et al. The Modified Tardieu Scale for the measurement of elbow flexor spasticity in adult patients with hemiplegia. Brain Inj. 2008;22:1007–12.

    Article  PubMed  Google Scholar 

  37. Centen A, Lowrey CR, Scott SH, Yeh TT, Mochizuki G. KAPS (kinematic assessment of passive stretch): a tool to assess elbow flexor and extensor spasticity after stroke using a robotic exoskeleton. J NeuroEng Rehabil. 2017;14:59.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Simmatis L, Atallah G, Scott SH, et al. The feasibility of using robotic technology to quantify sensory, motor, and cognitive impairments associated with ALS. Amyotroph Lateral Scler Front Degener. 2019;0:1–10.

    Google Scholar 

  39. Bates D, Mächler M, Bolker B, et al. Fitting linear mixed-effects models using lme4. ArXiv14065823 Stat. 2014. http://arxiv.org/abs/1406.5823. Accessed 29 April 2019.

  40. Wedel M, Böckenholt U, Kamakura WA. Factor models for multivariate count data. J Multivar Anal. 2003;87:356–69.

    Article  Google Scholar 

  41. Hothorn T, Bretz F, Westfall P. Simultaneous inference in general parametric models. Biom J. 2008;50:346–63.

    Article  PubMed  Google Scholar 

  42. Coote S, Murphy B, Harwin W, Stokes E. The effect of the GENTLE/s robot-mediated therapy system on arm function after stroke. Clin Rehabil. 2008;22:395–405.

    Article  PubMed  Google Scholar 

  43. Hesse S, Schulte-Tigges G, Konrad M, Bardeleben A, Werner C. Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects. Arch Phys Med Rehabil. 2003;84:915–20.

    Article  PubMed  Google Scholar 

  44. Hesse S, Werner C, Pohl M, Rueckriem S, Mehrholz J, Lingnau ML. Computerized arm training improves the motor control of the severely affected arm after stroke: a single-blinded randomized trial in two centers. Stroke. 2005;36:1960–6.

    Article  CAS  PubMed  Google Scholar 

  45. Staubli P, Nef T, Klamroth-Marganska V, Riener R. Effects of intensive arm training with the rehabilitation robot ARMin II in chronic stroke patients: four single-cases. J Neuroeng Rehabil. 2009;6:46.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Heitz RP, Schall JD. Neural mechanisms of speed-accuracy tradeoff. Neuron. 2012;76:616–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Heitz RP. The speed-accuracy tradeoff: history, physiology, methodology, and behavior. Front Neurosci. 2014;8:150.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Plamondon R, Alimi AM. Speed/accuracy trade-offs in target-directed movements. Behav Brain Sci. 1997;20:279–303.

    Article  CAS  PubMed  Google Scholar 

  49. Chittka L, Skorupski P, Raine NE. Speed–accuracy tradeoffs in animal decision making. Trends Ecol Evol. 2009;24:400–7.

    Article  PubMed  Google Scholar 

  50. Weiss P, Stelmach G, Adler CH, et al. Parkinsonian arm movements as altered by task difficulty. Parkinsonism Relat Disord. 1996;2:215–23.

    Article  CAS  PubMed  Google Scholar 

  51. Montgomery EB, Nuessen J. The movement speed/accuracy operator in Parkinson’s disease. Neurology. 1990;40:269.

    Article  PubMed  Google Scholar 

  52. Fernandez L, Huys R, Issartel J, Azulay JP, Eusebio A. Movement speed-accuracy trade-off in Parkinson’s disease. Front Neurol. 2018;9:897.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Lefebvre S, Laloux P, Peeters A, et al. Dual-tDCS enhances online motor skill learning and long-term retention in chronic stroke patients. Front Hum Neurosci. 2013;6:343.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Graham KM, Moore KD, Cabel DW, Gribble PL, Cisek P, Scott SH. Kinematics and kinetics of multijoint reaching in nonhuman primates. J Neurophysiol. 2003;89:2667–77.

    Article  PubMed  Google Scholar 

  55. Levin MF, Kleim JA, Wolf SL. What do motor “recovery” and “compensation” mean in patients following stroke? Neurorehabil Neural Repair. 2009;23:313–9.

    Article  CAS  PubMed  Google Scholar 

  56. Brown JL. The evolution of behavior. New York: WW Norton; 1975.

    Google Scholar 

  57. Desmurget M, Prablanc C. Postural control of three-dimensional prehension movements. J Neurophysiol. 1997;77:452–64.

    Article  CAS  PubMed  Google Scholar 

  58. Friel KM, Nudo RJ. Recovery of motor function after focal cortical injury in primates: compensatory movement patterns used during rehabilitative training. Somatosens Mot Res. 1998;15:173–89.

    Article  CAS  PubMed  Google Scholar 

  59. Archambault P, Pigeon P, Feldman AG, Levin MF. Recruitment and sequencing of different degrees of freedom during pointing movements involving the trunk in healthy and hemiparetic subjects. Exp Brain Res. 1999;126:55–67.

    Article  CAS  PubMed  Google Scholar 

  60. Bates E, Wilson SM, Saygin AP, Dick F, Sereno MI, Knight RT, et al. Voxel-based lesion–symptom mapping. Nat Neurosci. 2003;6:448–50.

    Article  CAS  PubMed  Google Scholar 

  61. Lo R, Gitelman D, Levy R, Hulvershorn J, Parrish T. Identification of critical areas for motor function recovery in chronic stroke subjects using voxel-based lesion symptom mapping. NeuroImage. 2010;49:9–18.

    Article  PubMed  Google Scholar 

  62. Plautz EJ, Barbay S, Frost SB, Friel KM, Dancause N, Zoubina EV, et al. Post-infarct cortical plasticity and behavioral recovery using concurrent cortical stimulation and rehabilitative training: a feasibility study in primates. Neurol Res. 2003;25:801–10.

    Article  PubMed  Google Scholar 

  63. Plautz EJ, Milliken GW, Nudo RJ. Effects of repetitive motor training on movement representations in adult squirrel monkeys: role of use versus learning. Neurobiol Learn Mem. 2000;74:27–55.

    Article  CAS  PubMed  Google Scholar 

  64. Frost SB, Barbay S, Friel KM, Plautz EJ, Nudo RJ. Reorganization of remote cortical regions after ischemic brain injury: a potential substrate for stroke recovery. J Neurophysiol. 2003;89:3205–14.

    Article  CAS  PubMed  Google Scholar 

  65. Beer RF, Dewald JP, Dawson ML, et al. Target-dependent differences between free and constrained arm movements in chronic hemiparesis. Exp Brain Res. 2004;156:458–70.

    Article  PubMed  Google Scholar 

  66. Beer RF, Given JD, Dewald JP. Task-dependent weakness at the elbow in patients with hemiparesis. Arch Phys Med Rehabil. 1999;80:766–72.

    Article  CAS  PubMed  Google Scholar 

  67. Twitchell TE. The restoration of motor function following hemiplegia in man. Brain. 1951;74:443–80.

    Article  CAS  PubMed  Google Scholar 

  68. Prange GB, Krabben T, Renzenbrink GJ, Ijzerman MJ, Hermens HJ, Jannink MJA. Changes in muscle activation after reach training with gravity compensation in chronic stroke patients. Int J Rehabil Res. 2012;35:234–42.

    Article  PubMed  Google Scholar 

  69. Khallaf ME. Effect of gravity and task specific training of elbow extensors on upper extremity function after stroke. Neurol Res Int. 2018.

  70. Murata Y, Higo N, Oishi T, Yamashita A, Matsuda K, Hayashi M, et al. Effects of motor training on the recovery of manual dexterity after primary motor cortex lesion in macaque monkeys. J Neurophysiol. 2008;99:773–86.

    Article  PubMed  Google Scholar 

  71. Cooper BY, Glendinning DS, Vierck CJ. Finger movement deficits in the stumptail macaque following lesions of the fasciculus cuneatus. Somatosens Mot Res. 1993;10:17–29.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank J. Leclerc, T. Armand, P.E. Ryan, and O.N. Elhindi for critical assistance with data collection, analysis, figure illustrations, and manuscript preparation.

Funding

This research was supported by the Clinical Teachers’ Association of Queen’s University, Canada Foundation for Innovation, Brain Canada, and a Frederick Banting and Charles Best Canada Graduate Scholarship Doctoral Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas J. Cook.

Ethics declarations

Conflict of Interest

SHS is the cofounder and chief scientific officer of Kinarm, the company that commercializes the robotic technology used in this study. The other authors declare that they have no conflict of interest.

Ethical Approval

The studies described were conducted following procedures approved by the Queen’s University Animal Care Committee and in accordance with the guidelines of the Canadian Council on Animal Care.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Poole, M.C., Olesovsky, S.V. et al. Robotic Assessment of Upper Limb Function in a Nonhuman Primate Model of Chronic Stroke. Transl. Stroke Res. 12, 569–580 (2021). https://doi.org/10.1007/s12975-020-00859-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-020-00859-0

Keywords

Navigation