Skip to main content

Advertisement

Log in

Reversal of Global Ischemia-Induced Cognitive Dysfunction by Delayed Inhibition of TRPM2 Ion Channels

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Hippocampal injury and cognitive impairments are common after cardiac arrest and stroke and do not have an effective intervention despite much effort. Therefore, we developed a new approach aimed at reversing synaptic dysfunction by targeting TRPM2 channels. Cardiac arrest/cardiopulmonary resuscitation (CA/CPR) in mice was used to investigate cognitive deficits and the role of the calcium-permeable ion channel transient receptor potential-M2 (TRPM2) in ischemia-induced synaptic dysfunction. Our data indicates that absence (TRPM2−/−) or acute inhibition of TRPM2 channels with tatM2NX reduced hippocampal cell death in males only, but prevented synaptic plasticity deficits in both sexes. Remarkably, administration of tatM2NX weeks after injury reversed hippocampal plasticity and memory deficits. Finally, TRPM2-dependent activation of calcineurin-GSK3β pathway contributes to synaptic plasticity impairments. These data suggest persistent TRPM2 activity following ischemia contributes to impairments of the surviving hippocampal network and that inhibition of TRPM2 channels at chronic time points may represent a novel strategy to improve functional recovery following cerebral ischemia that is independent of neuroprotection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation. 2019:CIR0000000000000659. https://doi.org/10.1161/CIR.0000000000000659.

  2. Tiainen M, Poutiainen E, Kovala T, Takkunen O, Happola O, Roine RO. Cognitive and neurophysiological outcome of cardiac arrest survivors treated with therapeutic hypothermia. Stroke. 2007;38(8):2303–8. https://doi.org/10.1161/STROKEAHA.107.483867.

    Article  PubMed  Google Scholar 

  3. Moulaert VR, Verbunt JA, van Heugten CM, Wade DT. Cognitive impairments in survivors of out-of-hospital cardiac arrest: a systematic review. Resuscitation. 2009;80(3):297–305. https://doi.org/10.1016/j.resuscitation.2008.10.034.

    Article  PubMed  Google Scholar 

  4. Cronberg T, Lilja G, Rundgren M, Friberg H, Widner H. Long-term neurological outcome after cardiac arrest and therapeutic hypothermia. Resuscitation. 2009;80(10):1119–23. https://doi.org/10.1016/j.resuscitation.2009.06.021.

    Article  PubMed  Google Scholar 

  5. Mateen FJ, Josephs KA, Trenerry MR, Felmlee-Devine MD, Weaver AL, Carone M, et al. Long-term cognitive outcomes following out-of-hospital cardiac arrest: a population-based study. Neurology. 2011;77(15):1438–45. https://doi.org/10.1212/WNL.0b013e318232ab33.

    Article  CAS  PubMed  Google Scholar 

  6. Beesems SG, Wittebrood KM, de Haan RJ, Koster RW. Cognitive function and quality of life after successful resuscitation from cardiac arrest. Resuscitation. 2014;85(9):1269–74. https://doi.org/10.1016/j.resuscitation.2014.05.027.

    Article  PubMed  Google Scholar 

  7. Horn M, Schlote W. Delayed neuronal death and delayed neuronal recovery in the human brain following global ischemia. Acta Neuropathol. 1992;85(1):79–87.

    Article  CAS  Google Scholar 

  8. Deng G, Yonchek JC, Quillinan N, Strnad FA, Exo J, Herson PS, et al. A novel mouse model of pediatric cardiac arrest and cardiopulmonary resuscitation reveals age-dependent neuronal sensitivities to ischemic injury. J Neurosci Methods. 2014;222:34–41. https://doi.org/10.1016/j.jneumeth.2013.10.015.

    Article  CAS  PubMed  Google Scholar 

  9. Clarkson AN, Huang BS, Macisaac SE, Mody I, Carmichael ST. Reducing excessive GABA-mediated tonic inhibition promotes functional recovery after stroke. Nature. 2010;468(7321):305–9. https://doi.org/10.1038/nature09511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Carmichael ST. Brain excitability in stroke: the yin and yang of stroke progression. Arch Neurol. 2012;69(2):161–7. https://doi.org/10.1001/archneurol.2011.1175.

    Article  PubMed  Google Scholar 

  11. Joy MT, Ben Assayag E, Shabashov-Stone D, Liraz-Zaltsman S, Mazzitelli J, Arenas M, et al. CCR5 is a therapeutic target for recovery after stroke and traumatic brain injury. Cell. 2019;176(5):1143–57 e13. https://doi.org/10.1016/j.cell.2019.01.044.

    Article  CAS  PubMed  Google Scholar 

  12. Lin YH, Dong J, Tang Y, Ni HY, Zhang Y, Su P, et al. Opening a new time window for treatment of stroke by targeting HDAC2. J Neurosci. 2017;37(28):6712–28. https://doi.org/10.1523/JNEUROSCI.0341-17.2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Orfila JE, Grewal H, Dietz RM, Strnad F, Shimizu T, Moreno M, et al. Delayed inhibition of tonic inhibition enhances functional recovery following experimental ischemic stroke. J Cereb Blood Flow Metab. 2017;39:271678X17750761. https://doi.org/10.1177/0271678X17750761.

    Article  Google Scholar 

  14. Dietz RM, Orfila JE, Rodgers KM, Patsos OP, Deng G, Chalmers N, et al. Juvenile cerebral ischemia reveals age-dependent BDNF-TrkB signaling changes: novel mechanism of recovery and therapeutic intervention. J Cereb Blood Flow Metab. 2018;38:271678X18766421. https://doi.org/10.1177/0271678X18766421.

    Article  Google Scholar 

  15. Orfila JE, Shimizu K, Garske AK, Deng G, Maylie J, Traystman RJ, et al. Increasing small conductance Ca2+-activated potassium channel activity reverses ischemia-induced impairment of long-term potentiation. Eur J Neurosci. 2014;40(8):3179–88. https://doi.org/10.1111/ejn.12683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fonfria E, Murdock PR, Cusdin FS, Benham CD, Kelsell RE, McNulty S. Tissue distribution profiles of the human TRPM cation channel family. J Recept Signal Transduct Res. 2006;26(3):159–78. https://doi.org/10.1080/10799890600637506.

    Article  CAS  PubMed  Google Scholar 

  17. Ostapchenko VG, Chen M, Guzman MS, Xie YF, Lavine N, Fan J, et al. The transient receptor potential melastatin 2 (TRPM2) channel contributes to beta-amyloid oligomer-related neurotoxicity and memory impairment. J Neurosci. 2015;35(45):15157–69. https://doi.org/10.1523/JNEUROSCI.4081-14.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Alawieyah Syed Mortadza S, Sim JA, Neubrand VE, Jiang LH. A critical role of TRPM2 channel in Abeta42 -induced microglial activation and generation of tumor necrosis factor-alpha. Glia. 2018;66(3):562–75. https://doi.org/10.1002/glia.23265.

    Article  PubMed  Google Scholar 

  19. Jang Y, Lee SH, Lee B, Jung S, Khalid A, Uchida K, et al. TRPM2, a susceptibility gene for bipolar disorder, regulates glycogen synthase kinase-3 activity in the brain. J Neurosci. 2015;35(34):11811–23. https://doi.org/10.1523/JNEUROSCI.5251-14.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Alim I, Teves L, Li R, Mori Y, Tymianski M. Modulation of NMDAR subunit expression by TRPM2 channels regulates neuronal vulnerability to ischemic cell death. J Neurosci. 2013;33(44):17264–77. https://doi.org/10.1523/JNEUROSCI.1729-13.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rempe DA, Takano T, Nedergaard M. TR(I)Pping towards treatment for ischemia. Nat Neurosci. 2009;12(10):1215–6.

    Article  CAS  Google Scholar 

  22. Jia J, Verma S, Nakayama S, Quillinan N, Grafe MR, Hurn PD, et al. Sex differences in neuroprotection provided by inhibition of TRPM2 channels following experimental stroke. J Cereb Blood Flow Metab. 2011;31:2160–8. https://doi.org/10.1038/jcbfm.2011.77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shimizu T, Dietz RM, Cruz-Torres I, Strnad F, Garske AK, Moreno M, et al. Extended therapeutic window of a novel peptide inhibitor of TRPM2 channels following focal cerebral ischemia. Exp Neurol. 2016;283(Pt A):151–6. https://doi.org/10.1016/j.expneurol.2016.06.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nakayama S, Vest R, Traystman RJ, Herson PS. Sexually dimorphic response of TRPM2 inhibition following cardiac arrest-induced global cerebral ischemia in mice. J Mol Neurosci. 2013;51:92–8. https://doi.org/10.1007/s12031-013-0005-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shimizu T, Macey TA, Quillinan N, Klawitter J, Perraud AL, Traystman RJ, et al. Androgen and PARP-1 regulation of TRPM2 channels after ischemic injury. J Cereb Blood Flow Metab. 2013;33(10):1549–55. https://doi.org/10.1038/jcbfm.2013.105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Quillinan N, Grewal H, Klawitter J, Herson PS. Sex steroids do not modulate TRPM2-mediated injury in females following middle cerebral artery occlusion. eNeuro. 2015;1:1–8.

    Google Scholar 

  27. Shimizu K, Quillinan N, Orfila JE, Herson PS. Sirtuin-2 mediates male specific neuronal injury following experimental cardiac arrest through activation of TRPM2 ion channels. Exp Neurol. 2016;275(Pt 1):78–83. https://doi.org/10.1016/j.expneurol.2015.10.014.

    Article  CAS  PubMed  Google Scholar 

  28. Xie YF, Belrose JC, Lei G, Tymianski M, Mori Y, Macdonald JF, et al. Dependence of NMDA/GSK-3beta mediated metaplasticity on TRPM2 channels at hippocampal CA3-CA1 synapses. Mol Brain. 2011;4:44. https://doi.org/10.1186/1756-6606-4-44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Deng G, Carter J, Traystman RJ, Wagner DH, Herson PS. Pro-inflammatory T-lymphocytes rapidly infiltrate into the brain and contribute to neuronal injury following cardiac arrest and cardiopulmonary resuscitation. J Neuroimmunol. 2014;274(1–2):132–40. https://doi.org/10.1016/j.jneuroim.2014.07.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dietz RM, Deng G, Orfila JE, Hui X, Traystman RJ, Herson PS. Therapeutic hypothermia protects against ischemia-induced impairment of synaptic plasticity following juvenile cardiac arrest in sex-dependent manner. Neuroscience. 2016;325:132–41. https://doi.org/10.1016/j.neuroscience.2016.03.052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Herson PS, Hurn PD. Gender and the Injured Brain. Prog Brain Res. 2010;186:177–87. https://doi.org/10.1016/B978-0-444-53630-3.00012-9

    Chapter  Google Scholar 

  32. Deng G, Orfila JE, Dietz RM, Moreno-Garcia M, Rodgers KM, Coultrap SJ, et al. Autonomous CaMKII activity as a drug target for histological and functional neuroprotection after resuscitation from cardiac arrest. Cell Rep. 2017;18(5):1109–17. https://doi.org/10.1016/j.celrep.2017.01.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Deng G, Yonchek JC, Quillinan N, Strnad FA, Exo J, Herson PS, et al. A novel mouse model of pediatric cardiac arrest and cardiopulmonary resuscitation reveals age-dependent neuronal sensitivities to ischemic injury. J Neurosci Methods. 2013;222:34–41. https://doi.org/10.1016/j.jneumeth.2013.10.015.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jo J, Whitcomb DJ, Olsen KM, Kerrigan TL, Lo SC, Bru-Mercier G, et al. Abeta(1-42) inhibition of LTP is mediated by a signaling pathway involving caspase-3, Akt1 and GSK-3beta. Nat Neurosci. 2011;14(5):545–7. https://doi.org/10.1038/nn.2785.

    Article  CAS  PubMed  Google Scholar 

  35. Hicks JW, VanBrocklin HF, Wilson AA, Houle S, Vasdev N. Radiolabeled small molecule protein kinase inhibitors for imaging with PET or SPECT. Molecules. 2010;15(11):8260–78. https://doi.org/10.3390/molecules15118260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhu W, Wang L, Zhang L, Palmateer JM, Libal NL, Hurn PD, et al. Isoflurane preconditioning neuroprotection in experimental focal stroke is androgen-dependent in male mice. Neuroscience. 2010;169(2):758–69. https://doi.org/10.1016/j.neuroscience.2010.05.038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Uchida M, Palmateer JM, Herson PS, DeVries AC, Cheng J, Hurn PD. Dose-dependent effects of androgens on outcome after focal cerebral ischemia in adult male mice. J Cereb Blood Flow Metab. 2009;29(8):1454–62. https://doi.org/10.1038/jcbfm.2009.60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Miller BA, Zhang W. TRP channels as mediators of oxidative stress. Adv Exp Med Biol. 2011;704:531–44. https://doi.org/10.1007/978-94-007-0265-3_29.

    Article  CAS  PubMed  Google Scholar 

  39. Szydlowska K, Tymianski M. Calcium, ischemia and excitotoxicity. Cell Calcium. 2010;47(2):122–9.

    Article  CAS  Google Scholar 

  40. Toda T, Yamamoto S, Umehara N, Mori Y, Wakamori M, Shimizu S. Protective effects of duloxetine against cerebral ischemia-reperfusion injury via transient receptor potential melastatin 2 inhibition. J Pharmacol Exp Ther. 2019;368(2):246–54. https://doi.org/10.1124/jpet.118.253922.

    Article  CAS  PubMed  Google Scholar 

  41. Gelderblom M, Melzer N, Schattling B, Gob E, Hicking G, Arunachalam P, et al. Transient receptor potential melastatin subfamily member 2 cation channel regulates detrimental immune cell invasion in ischemic stroke. Stroke. 2014;45(11):3395–402. https://doi.org/10.1161/STROKEAHA.114.005836.

    Article  CAS  PubMed  Google Scholar 

  42. Verma S, Quillinan N, Yang YF, Nakayama S, Cheng J, Kelley MH, et al. TRPM2 channel activation following in vitro ischemia contributes to male hippocampal cell death. Neurosci Lett. 2012;530(1):41–6. https://doi.org/10.1016/j.neulet.2012.09.044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fonfria E, Marshall IC, Benham CD, Boyfield I, Brown JD, Hill K, et al. TRPM2 channel opening in response to oxidative stress is dependent on activation of poly(ADP-ribose) polymerase. Br J Pharmacol. 2004;143(1):186–92.

    Article  CAS  Google Scholar 

  44. Miller BA. Inhibition of TRPM2 function by PARP inhibitors protects cells from oxidative stress-induced death. Br J Pharmacol. 2004;143(5):515–6. https://doi.org/10.1038/sj.bjp.0705923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yang KT, Chang WL, Yang PC, Chien CL, Lai MS, Su MJ, et al. Activation of the transient receptor potential M2 channel and poly(ADP-ribose) polymerase is involved in oxidative stress-induced cardiomyocyte death. Cell Death Differ. 2006;13(10):1815–26.

    Article  CAS  Google Scholar 

  46. Fairbanks SL, Vest R, Verma S, Traystman RJ, Herson PS. Sex stratified neuronal cultures to study ischemic cell death pathways. J Visualized Exp. 2013;2013(82):e50758. https://doi.org/10.3791/50758.

    Article  CAS  Google Scholar 

  47. Grubisha O, Rafty LA, Takanishi CL, Xu X, Tong L, Perraud AL, et al. Metabolite of SIR2 reaction modulates TRPM2 ion channel. J Biol Chem. 2006;281(20):14057–65.

    Article  CAS  Google Scholar 

  48. Kelly S, Zhao H, Hua Sun G, Cheng D, Qiao Y, Luo J, et al. Glycogen synthase kinase 3beta inhibitor Chir025 reduces neuronal death resulting from oxygen-glucose deprivation, glutamate excitotoxicity, and cerebral ischemia. Exp Neurol. 2004;188(2):378–86. https://doi.org/10.1016/j.expneurol.2004.04.004.

    Article  CAS  PubMed  Google Scholar 

  49. Endo H, Nito C, Kamada H, Nishi T, Chan PH. Activation of the Akt/GSK3beta signaling pathway mediates survival of vulnerable hippocampal neurons after transient global cerebral ischemia in rats. J Cereb Blood Flow Metab. 2006;26(12):1479–89. https://doi.org/10.1038/sj.jcbfm.9600303.

    Article  CAS  PubMed  Google Scholar 

  50. Bradley CA, Peineau S, Taghibiglou C, Nicolas CS, Whitcomb DJ, Bortolotto ZA, et al. A pivotal role of GSK-3 in synaptic plasticity. Front Mol Neurosci. 2012;5:13. https://doi.org/10.3389/fnmol.2012.00013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Peineau S, Taghibiglou C, Bradley C, Wong TP, Liu L, Lu J, et al. LTP inhibits LTD in the hippocampus via regulation of GSK3beta. Neuron. 2007;53(5):703–17. https://doi.org/10.1016/j.neuron.2007.01.029.

    Article  CAS  PubMed  Google Scholar 

  52. Peineau S, Nicolas CS, Bortolotto ZA, Bhat RV, Ryves WJ, Harwood AJ, et al. A systematic investigation of the protein kinases involved in NMDA receptor-dependent LTD: evidence for a role of GSK-3 but not other serine/threonine kinases. Mol Brain. 2009;2:22. https://doi.org/10.1186/1756-6606-2-22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Collingridge GL, Peineau S, Howland JG, Wang YT. Long-term depression in the CNS. Nat Rev Neurosci. 2010;11(7):459–73. https://doi.org/10.1038/nrn2867.

    Article  CAS  PubMed  Google Scholar 

  54. Hooper C, Markevich V, Plattner F, Killick R, Schofield E, Engel T, et al. Glycogen synthase kinase-3 inhibition is integral to long-term potentiation. Eur J Neurosci. 2007;25(1):81–6. https://doi.org/10.1111/j.1460-9568.2006.05245.x.

    Article  PubMed  Google Scholar 

  55. Fourgeaud L, Dvorak C, Faouzi M, Starkus J, Sahdeo S, Wang Q, et al. Pharmacology of JNJ-28583113: a novel TRPM2 antagonist. Eur J Pharmacol. 2019. https://doi.org/10.1016/j.ejphar.2019.03.043.

    Article  CAS  Google Scholar 

  56. King MK, Pardo M, Cheng Y, Downey K, Jope RS, Beurel E. Glycogen synthase kinase-3 inhibitors: rescuers of cognitive impairments. Pharmacol Ther. 2014;141(1):1–12. https://doi.org/10.1016/j.pharmthera.2013.07.010.

    Article  CAS  PubMed  Google Scholar 

  57. Rudy JW, O’Reilly RC. Conjunctive representations, the hippocampus, and contextual fear conditioning. Cogn Affect Behav Neurosci. 2001;1(1):66–82.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Joan Yonchek for her expert assistance with histology preparation and unwavering support.

Funding

This study was funded by extramural grant support. This research was supported by National Institutes of Health grants T32GM007635 (Pharmacology training grant), K08NS097586 (R.M.D), and R01NS092645 (P.S.H).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: P.S.H.; Methodology: R.M.D, I.C-T, J.E.O., N.Q., P.S.H.; Investigation: R.M.D., I.C-T, J.E.O., O.P.P., K.S., N.C., G.D., E.T; Writing original draft: R.M.D. and I.C-T.; Writing, reviewing, and editing: R.M.D., I.C-T., J.E.O., N.Q., P.S.H., Funding acquisition: R.M.D., P.S.H.

Corresponding author

Correspondence to Paco S. Herson.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable national and institutional guidelines for the care and use of animals were followed. Ethical approval: This article does not contain any studies with human participants.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 193 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dietz, R.M., Cruz-Torres, I., Orfila, J.E. et al. Reversal of Global Ischemia-Induced Cognitive Dysfunction by Delayed Inhibition of TRPM2 Ion Channels. Transl. Stroke Res. 11, 254–266 (2020). https://doi.org/10.1007/s12975-019-00712-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-019-00712-z

Keywords

Navigation