Skip to main content

Advertisement

Log in

Recurrent Hypoglycemia Exacerbates Cerebral Ischemic Damage in Diabetic Rats via Enhanced Post-Ischemic Mitochondrial Dysfunction

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Diabetes significantly increases the risk of stroke and post-stroke mortality. Recurrent hypoglycemia (RH) is common among diabetes patients owing to glucose-lowering therapies. Earlier, we showed that RH in a rat model of insulin-dependent diabetes exacerbates cerebral ischemic damage. Impaired mitochondrial function has been implicated as a central player in the development of cerebral ischemic damage. Hypoglycemia is also known to affect mitochondrial functioning. The present study tested the hypothesis that prior exposure of insulin-treated diabetic (ITD) rats to RH exacerbates brain damage via enhanced post-ischemic mitochondrial dysfunction. In a rat model of streptozotocin-induced diabetes, we evaluated post-ischemic mitochondrial function in RH-exposed ITD rats. Rats were exposed to five episodes of moderate hypoglycemia prior to the induction of cerebral ischemia. We also evaluated the impact of RH, both alone and in combination with cerebral ischemia, on cognitive function using the Barnes circular platform maze test. We observed that RH exposure to ITD rats leads to increased cerebral ischemic damage and decreased mitochondrial complex I activity. Exposure of ITD rats to RH impaired spatial learning and memory. Our results demonstrate that RH exposure to ITD rats potentially increases post-ischemic damage via enhanced post-ischemic mitochondrial dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CA:

cornus ammonis

ETC:

electron transport chain

ITD:

insulin-treated diabetic

MMP:

mitochondrial membrane potential

MPTP:

mitochondrial permeability transition pores

RH:

recurrent hypoglycemia

ROS:

reactive oxygen species

STZ:

streptozotocin

s.c.:

subcutaneous

T1D:

type 1 diabetes

T2D:

type 2 diabetes

TNF-α:

tumor necrosis factor α

References

  1. Amador-Alvarado L, Montiel T, Massieu L. Differential production of reactive oxygen species in distinct brain regions of hypoglycemic mice. Metab Brain Dis. 2014;29:711–9.

    CAS  PubMed  Google Scholar 

  2. American Diabetes Association. Standards of medical care in diabetes—2011. Diabetes Care. 2011;34(Suppl 1):S11–61.

    PubMed Central  Google Scholar 

  3. Anderson MF, Sims NR. Mitochondrial respiratory function and cell death in focal cerebral ischemia. J Neurochem. 1999;73:1189–99.

    CAS  PubMed  Google Scholar 

  4. Baregamian N, Song J, Bailey CE, Papaconstantinou J, Evers BM, Chung DH. Tumor necrosis factor-alpha and apoptosis signal-regulating kinase 1 control reactive oxygen species release, mitochondrial autophagy, and c-Jun N-terminal kinase/p38 phosphorylation during necrotizing enterocolitis. Oxidative Med Cell Longev. 2009;2:297–306.

    Google Scholar 

  5. Barone FC, Arvin B, White RF, Miller A, Webb CL, Willette RN, et al. Tumor necrosis factor-alpha. A mediator of focal ischemic brain injury. Stroke. 1997;28:1233–44.

    CAS  PubMed  Google Scholar 

  6. Barrientos A, Moraes CT. Titrating the effects of mitochondrial complex I impairment in the cell physiology. J Biol Chem. 1999;274:16188–97.

    CAS  PubMed  Google Scholar 

  7. Beckman, J., Libby, P., Creager, M., Diabetes mellitus, the metabolic syndrome, and atherosclerotic vascular disease, 2008.

    Google Scholar 

  8. Boland E, Monsod T, Delucia M, Brandt CA, Fernando S, Tamborlane WV. Limitations of conventional methods of self-monitoring of blood glucose: lessons learned from 3 days of continuous glucose sensing in pediatric patients with type 1 diabetes. Diabetes Care. 2001;24:1858–62.

    CAS  PubMed  Google Scholar 

  9. Borutaite V, Morkuniene R, Brown GC. Release of cytochrome c from heart mitochondria is induced by high Ca2+ and peroxynitrite and is responsible for Ca(2+)-induced inhibition of substrate oxidation. Biochim Biophys Acta. 1999;1453:41–8.

    CAS  PubMed  Google Scholar 

  10. Brainin M, Tuomilehto J, Heiss WD, Bornstein NM, Bath PM, Teuschl Y, et al. Post-stroke cognitive decline: an update and perspectives for clinical research. Eur J Neurol. 2015;22(229–238):e213–26.

    Google Scholar 

  11. Canevari L, Kuroda S, Bates TE, Clark JB, Siesjo BK. Activity of mitochondrial respiratory chain enzymes after transient focal ischemia in the rat. J Cereb Blood Flow Metab. 1997;17:1166–9.

    CAS  PubMed  Google Scholar 

  12. Cardoso S, Correia SC, Santos RX, Carvalho C, Candeias E, Duarte AI, et al. Hyperglycemia, hypoglycemia and dementia: role of mitochondria and uncoupling proteins. Curr Mol Med. 2013;13:586–601.

    CAS  PubMed  Google Scholar 

  13. Center for Disease Control and Prevention 2016 http://www.cdc.gov/diabetes/pubs/statsreport14/national-diabetes-report-web.pdf (Retrieved on September 25th, 2016).

  14. Chan PH. Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab. 2001;21:2–14.

    CAS  PubMed  Google Scholar 

  15. Chauvin C, De Oliveira F, Ronot X, Mousseau M, Leverve X, Fontaine E. Rotenone inhibits the mitochondrial permeability transition-induced cell death in U937 and KB cells. J Biol Chem. 2001;276:41394–8.

    CAS  PubMed  Google Scholar 

  16. Choi BY, Kim JH, Kim HJ, Yoo JH, Song HK, Sohn M, et al. Pyruvate administration reduces recurrent/moderate hypoglycemia-induced cortical neuron death in diabetic rats. PLoS One. 2013;8:e81523.

    PubMed  PubMed Central  Google Scholar 

  17. Cohan CH, Neumann JT, Dave KR, Alekseyenko A, Binkert M, Stransky K, et al. Effect of cardiac arrest on cognitive impairment and hippocampal plasticity in middle-aged rats. PLoS One. 2015;10:e0124918.

    PubMed  PubMed Central  Google Scholar 

  18. Corda S, Laplace C, Vicaut E, Duranteau J. Rapid reactive oxygen species production by mitochondria in endothelial cells exposed to tumor necrosis factor-alpha is mediated by ceramide. Am J Respir Cell Mol Biol. 2001;24:762–8.

    CAS  Google Scholar 

  19. Cryer PE. Hypoglycemia-associated autonomic failure in diabetes. Am J Physiol Endocrinol Metab. 2001;281:E1115–21.

    CAS  PubMed  Google Scholar 

  20. Cryer PE. Diverse causes of hypoglycemia-associated autonomic failure in diabetes. N Engl J Med. 2004;350:2272–9.

    CAS  PubMed  Google Scholar 

  21. Cuzzocrea S, Riley DP, Caputi AP, Salvemini D. Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury. Pharmacol Rev. 2001;53:135–59.

    CAS  PubMed  Google Scholar 

  22. Dave KR, Lange-Asschenfeldt C, Raval AP, Prado R, Busto R, Saul I, et al. Ischemic preconditioning ameliorates excitotoxicity by shifting glutamate/gamma-aminobutyric acid release and biosynthesis. J Neurosci Res. 2005;82:665–73.

    CAS  PubMed  Google Scholar 

  23. Dave KR, Saul I, Busto R, Ginsberg MD, Sick TJ, Perez-Pinzon MA. Ischemic preconditioning preserves mitochondrial function after global cerebral ischemia in rat hippocampus. J Cereb Blood Flow Metab. 2001;21:1401–10.

    CAS  PubMed  Google Scholar 

  24. Dave KR, Tamariz J, Desai KM, Brand FJ, Liu A, Saul I, et al. Recurrent hypoglycemia exacerbates cerebral ischemic damage in streptozotocin-induced diabetic rats. Stroke. 2011;42:1404–11.

    CAS  PubMed  Google Scholar 

  25. Davis EA, Jones TW. Hypoglycemia in children with diabetes: incidence, counterregulation and cognitive dysfunction. J Pediatr Endocrinol Metab. 1998;11:177–82.

    PubMed  Google Scholar 

  26. Davis SN, Fowler S, Costa F. Hypoglycemic counterregulatory responses differ between men and women with type 1 diabetes. Diabetes. 2000a;49:65–72.

    CAS  PubMed  Google Scholar 

  27. Davis SN, Shavers C, Costa F. Gender-related differences in counterregulatory responses to antecedent hypoglycemia in normal humans. J Clin Endocrinol Metab. 2000b;85:2148–57.

    CAS  PubMed  Google Scholar 

  28. DCCT Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med. 1993;329:977–86.

    Google Scholar 

  29. Doll DN, Engler-Chiurazzi EB, Lewis SE, Hu H, Kerr AE, Ren X, et al. Lipopolysaccharide exacerbates infarct size and results in worsened post-stroke behavioral outcomes. Behav Brain Funct. 2015a;11:32.

    PubMed  PubMed Central  Google Scholar 

  30. Doll DN, Rellick SL, Barr TL, Ren X, Simpkins JW. Rapid mitochondrial dysfunction mediates TNF-alpha-induced neurotoxicity. J Neurochem. 2015b;132:443–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Donnelly LA, Morris AD, Frier BM, Ellis JD, Donnan PT, Durrant R, et al. Frequency and predictors of hypoglycaemia in type 1 and insulin-treated type 2 diabetes: a population-based study. Diabet Med. 2005;22:749–55.

    CAS  PubMed  Google Scholar 

  32. EDIC group. Epidemiology of Diabetes Interventions and Complications (EDIC). Design, implementation, and preliminary results of a long-term follow-up of the Diabetes Control and Complications Trial Cohort. Diabetes Care. 1999;22:99–111.

    Google Scholar 

  33. Endres M, Wang ZQ, Namura S, Waeber C, Moskowitz MA. Ischemic brain injury is mediated by the activation of poly(ADP-ribose)polymerase. J Cereb Blood Flow Metab. 1997;17:1143–51.

    CAS  PubMed  Google Scholar 

  34. Feng ZC, Sick TJ, Rosenthal M. Oxygen sensitivity of mitochondrial redox status and evoked potential recovery early during reperfusion in post-ischemic rat brain. Resuscitation. 1998;37:33–41.

    CAS  PubMed  Google Scholar 

  35. Fiskum G, Murphy AN, Beal MF. Mitochondria in neurodegeneration: acute ischemia and chronic neurodegenerative diseases. J Cereb Blood Flow Metab. 1999;19:351–69.

    CAS  PubMed  Google Scholar 

  36. Geddes J, Schopman JE, Zammitt NN, Frier BM. Prevalence of impaired awareness of hypoglycaemia in adults with type 1 diabetes. Diabet Med. 2008;25:501–4.

    CAS  PubMed  Google Scholar 

  37. Gehlaut RR, Dogbey GY, Schwartz FL, Marling CR, Shubrook JH. Hypoglycemia in type 2 diabetes—more common than you think: a continuous glucose monitoring study. J Diabetes Sci Technol. 2015;9:999–1005.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Giachin G, Bouverot R, Acajjaoui S, Pantalone S, Soler-Lopez M. Dynamics of human mitochondrial complex I assembly: implications for neurodegenerative diseases. Front Mol Biosci. 2016;3:43.

    PubMed  PubMed Central  Google Scholar 

  39. Goossens V, Grooten J, De Vos K, Fiers W. Direct evidence for tumor necrosis factor-induced mitochondrial reactive oxygen intermediates and their involvement in cytotoxicity. Proc Natl Acad Sci U S A. 1995;92:8115–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Goossens V, Stange G, Moens K, Pipeleers D, Grooten J. Regulation of tumor necrosis factor-induced, mitochondria- and reactive oxygen species-dependent cell death by the electron flux through the electron transport chain complex I. Antioxid Redox Signal. 1999;1:285–95.

    CAS  PubMed  Google Scholar 

  41. Guo C, Sun L, Chen X, Zhang D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res. 2013;8:2003–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Harrison FE, Reiserer RS, Tomarken AJ, McDonald MP. Spatial and nonspatial escape strategies in the Barnes maze. Learn Mem. 2006;13:809–19.

    PubMed  PubMed Central  Google Scholar 

  43. Hattori K, Lee H, Hurn PD, Crain BJ, Traystman RJ, DeVries AC. Cognitive deficits after focal cerebral ischemia in mice. Stroke. 2000;31:1939–44.

    CAS  PubMed  Google Scholar 

  44. Hershey T, Perantie DC, Warren SL, Zimmerman EC, Sadler M, White NH. Frequency and timing of severe hypoglycemia affects spatial memory in children with type 1 diabetes. Diabetes Care. 2005;28:2372–7.

    PubMed  Google Scholar 

  45. Herzog RI, Chan O, Yu S, Dziura J, McNay EC, Sherwin RS. Effect of acute and recurrent hypoglycemia on changes in brain glycogen concentration. Endocrinology. 2008;149:1499–504.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Higuchi M, Proske RJ, Yeh ET. Inhibition of mitochondrial respiratory chain complex I by TNF results in cytochrome c release, membrane permeability transition, and apoptosis. Oncogene. 1998;17:2515–24.

    CAS  PubMed  Google Scholar 

  47. Hodges H, Nelson A, Virley D, Kershaw TR, Sinden JD. Cognitive deficits induced by global cerebral ischaemia: prospects for transplant therapy. Pharmacol Biochem Behav. 1997;56:763–80.

    CAS  PubMed  Google Scholar 

  48. Iijima T. Mitochondrial membrane potential and ischemic neuronal death. Neurosci Res. 2006;55:234–43.

    CAS  PubMed  Google Scholar 

  49. Iijima T, Mishima T, Tohyama M, Akagawa K, Iwao Y. Mitochondrial membrane potential and intracellular ATP content after transient experimental ischemia in the cultured hippocampal neuron. Neurochem Int. 2003;43:263–9.

    CAS  PubMed  Google Scholar 

  50. International Diabetes Federation, IDF diabetes atlas. 2015.

  51. Isaev NK, Stelmashook EV, Dirnagl U, Plotnikov EY, Kuvshinova EA, Zorov DB. Mitochondrial free radical production induced by glucose deprivation in cerebellar granule neurons. Biochemistry (Mosc). 2008;73:149–55.

    CAS  Google Scholar 

  52. Isenberg JS, Klaunig JE. Role of the mitochondrial membrane permeability transition (MPT) in rotenone-induced apoptosis in liver cells. Toxicol Sci. 2000;53:340–51.

    CAS  PubMed  Google Scholar 

  53. Janssen MM, Snoek FJ, de Jongh RT, Casteleijn S, Deville W, Heine RJ. Biological and behavioural determinants of the frequency of mild, biochemical hypoglycaemia in patients with type 1 diabetes on multiple insulin injection therapy. Diabetes Metab Res Rev. 2000;16:157–63.

    CAS  PubMed  Google Scholar 

  54. Jing L, Mai L, Zhang JZ, Wang JG, Chang Y, Dong JD, et al. Diabetes inhibits cerebral ischemia-induced astrocyte activation—an observation in the cingulate cortex. Int J Biol Sci. 2013;9:980–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Jing L, Wang JG, Zhang JZ, Cao CX, Chang Y, Dong JD, et al. Upregulation of ICAM-1 in diabetic rats after transient forebrain ischemia and reperfusion injury. J Inflamm (Lond). 2014;11:35.

    Google Scholar 

  56. Kauppinen RA, Nicholls DG. Synaptosomal bioenergetics. The role of glycolysis, pyruvate oxidation and responses to hypoglycaemia. Eur J Biochem. 1986;158:159–65.

    CAS  PubMed  Google Scholar 

  57. Kiprianova I, Sandkuhler J, Schwab S, Hoyer S, Spranger M. Brain-derived neurotrophic factor improves long-term potentiation and cognitive functions after transient forebrain ischemia in the rat. Exp Neurol. 1999;159:511–9.

    CAS  PubMed  Google Scholar 

  58. Kissela B, Air E. Diabetes: impact on stroke risk and poststroke recovery. Semin Neurol. 2006;26:100–7.

    PubMed  Google Scholar 

  59. Kowaltowski AJ, Vercesi AE, Fiskum G. Bcl-2 prevents mitochondrial permeability transition and cytochrome c release via maintenance of reduced pyridine nucleotides. Cell Death Differ. 2000;7:903–10.

    CAS  PubMed  Google Scholar 

  60. Lee C, Sciamanna M, Peterson P. Intact rat brain mitochondria from a single animal: preparation and properties. Methods Toxicology. 1993;2:41–50.

    Google Scholar 

  61. Levine DA, Galecki AT, Langa KM, Unverzagt FW, Kabeto MU, Giordani B, et al. Trajectory of cognitive decline after incident stroke. JAMA. 2015;314:41–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Lincoln NB, Faleiro RM, Kelly C, Kirk BA, Jeffcoate WJ. Effect of long-term glycemic control on cognitive function. Diabetes Care. 1996;19:656–8.

    CAS  PubMed  Google Scholar 

  63. Liu P, Yang X, Hei C, Meli Y, Niu J, Sun T, et al. Rapamycin reduced ischemic brain damage in diabetic animals is associated with suppressions of mTOR and ERK1/2 signaling. Int J Biol Sci. 2016;12:1032–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Liu Y, Rosenthal RE, Haywood Y, Miljkovic-Lolic M, Vanderhoek JY, Fiskum G. Normoxic ventilation after cardiac arrest reduces oxidation of brain lipids and improves neurological outcome. Stroke. 1998;29:1679–86.

    CAS  PubMed  Google Scholar 

  65. McCrimmon RJ, Frier BM. Hypoglycaemia, the most feared complication of insulin therapy. Diabete Metab. 1994;20:503–12.

    CAS  PubMed  Google Scholar 

  66. McGowan JE, Chen L, Gao D, Trush M, Wei C. Increased mitochondrial reactive oxygen species production in newborn brain during hypoglycemia. Neurosci Lett. 2006;399:111–4.

    CAS  PubMed  Google Scholar 

  67. McNally PG, Dean JD, Morris AD, Wilkinson PD, Compion G, Heller SR. Using continuous glucose monitoring to measure the frequency of low glucose values when using biphasic insulin aspart 30 compared with biphasic human insulin 30: a double-blind crossover study in individuals with type 2 diabetes. Diabetes Care. 2007;30:1044–8.

    CAS  PubMed  Google Scholar 

  68. McNay E. Recurrent hypoglycemia increases anxiety and amygdala norepinephrine release during subsequent hypoglycemia. Front Endocrinol (Lausanne). 2015;6:175.

    Google Scholar 

  69. McNay EC, Sherwin RS. Effect of recurrent hypoglycemia on spatial cognition and cognitive metabolism in normal and diabetic rats. Diabetes. 2004;53:418–25.

    CAS  PubMed  Google Scholar 

  70. McNay EC, Williamson A, McCrimmon RJ, Sherwin RS. Cognitive and neural hippocampal effects of long-term moderate recurrent hypoglycemia. Diabetes. 2006;55:1088–95.

    CAS  PubMed  Google Scholar 

  71. McNeilly AD, Gallagher JR, Dinkova-Kostova AT, Hayes JD, Sharkey J, Ashford ML, et al. Nrf2-mediated neuroprotection against recurrent hypoglycemia is insufficient to prevent cognitive impairment in a rodent model of type 1 diabetes. Diabetes. 2016;65:3151–60.

    CAS  PubMed  Google Scholar 

  72. Moro MA, Almeida A, Bolanos JP, Lizasoain I. Mitochondrial respiratory chain and free radical generation in stroke. Free Radic Biol Med. 2005;39:1291–304.

    CAS  PubMed  Google Scholar 

  73. Moulaert VR, Verbunt JA, van Heugten CM, Wade DT. Cognitive impairments in survivors of out-of-hospital cardiac arrest: a systematic review. Resuscitation. 2009;80:297–305.

    PubMed  Google Scholar 

  74. Murakami K, Kondo T, Kawase M, Li Y, Sato S, Chen SF, et al. Mitochondrial susceptibility to oxidative stress exacerbates cerebral infarction that follows permanent focal cerebral ischemia in mutant mice with manganese superoxide dismutase deficiency. J Neurosci. 1998;18:205–13.

    CAS  PubMed  Google Scholar 

  75. Myers KM, Fiskum G, Liu Y, Simmens SJ, Bredesen DE, Murphy AN. Bcl-2 protects neural cells from cyanide/aglycemia-induced lipid oxidation, mitochondrial injury, and loss of viability. J Neurochem. 1995;65:2432–40.

    CAS  PubMed  Google Scholar 

  76. Nathan DM. The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: overview. Diabetes Care. 2014;37:9–16.

    CAS  PubMed  Google Scholar 

  77. Nawashiro H, Tasaki K, Ruetzler CA, Hallenbeck JM. TNF-alpha pretreatment induces protective effects against focal cerebral ischemia in mice. J Cereb Blood Flow Metab. 1997;17:483–90.

    CAS  PubMed  Google Scholar 

  78. Niatsetskaya ZV, Sosunov SA, Matsiukevich D, Utkina-Sosunova IV, Ratner VI, Starkov AA, et al. The oxygen free radicals originating from mitochondrial complex I contribute to oxidative brain injury following hypoxia-ischemia in neonatal mice. J Neurosci. 2012;32:3235–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Nicholls DG, Budd SL. Mitochondria and neuronal survival. Physiol Rev. 2000;80:315–60.

    CAS  PubMed  Google Scholar 

  80. Okada M, Tamura A, Urae A, Nakagomi T, Kirino T, Mine K, et al. Long-term spatial cognitive impairment following middle cerebral artery occlusion in rats. A behavioral study. J Cereb Blood Flow Metab. 1995;15:505–12.

    CAS  PubMed  Google Scholar 

  81. Ormstad H, Aass HC, Amthor KF, Lund-Sorensen N, Sandvik L. Serum cytokine and glucose levels as predictors of poststroke fatigue in acute ischemic stroke patients. J Neurol. 2011;258:670–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Pastorino JG, Simbula G, Yamamoto K, Glascott PA Jr, Rothman RJ, Farber JL. The cytotoxicity of tumor necrosis factor depends on induction of the mitochondrial permeability transition. J Biol Chem. 1996;271:29792–8.

    CAS  PubMed  Google Scholar 

  83. Patockova J, Marhol P, Tumova E, Krsiak M, Rokyta R, Stipek S, et al. Oxidative stress in the brain tissue of laboratory mice with acute post insulin hypoglycemia. Physiol Res. 2003;52:131–5.

    CAS  PubMed  Google Scholar 

  84. Pedersen-Bjergaard U, Pramming S, Heller SR, Wallace TM, Rasmussen AK, Jorgensen HV, et al. Severe hypoglycaemia in 1076 adult patients with type 1 diabetes: influence of risk markers and selection. Diabetes Metab Res Rev. 2004;20:479–86.

    PubMed  Google Scholar 

  85. Perez CA, Samudra N, Aiyagari V. Cognitive and functional consequence of cardiac arrest. Curr Neurol Neurosci Rep. 2016;16:70.

    PubMed  Google Scholar 

  86. Piantadosi CA, Zhang J. Mitochondrial generation of reactive oxygen species after brain ischemia in the rat. Stroke. 1996;27:327–31.

    CAS  PubMed  Google Scholar 

  87. Prut L, Belzung C. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol. 2003;463:3–33.

    CAS  PubMed  Google Scholar 

  88. Puente EC, Silverstein J, Bree AJ, Musikantow DR, Wozniak DF, Maloney S, et al. Recurrent moderate hypoglycemia ameliorates brain damage and cognitive dysfunction induced by severe hypoglycemia. Diabetes. 2010;59:1055–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Rath PC, Aggarwal BB. TNF-induced signaling in apoptosis. J Clin Immunol. 1999;19:350–64.

    CAS  PubMed  Google Scholar 

  90. Rovet J, Alvarez M. Attentional functioning in children and adolescents with IDDM. Diabetes Care. 1997;20:803–10.

    CAS  PubMed  Google Scholar 

  91. Schopman JE, Geddes J, Frier BM. Frequency of symptomatic and asymptomatic hypoglycaemia in type 1 diabetes: effect of impaired awareness of hypoglycaemia. Diabet Med. 2011;28:352–5.

    CAS  PubMed  Google Scholar 

  92. Schulze-Osthoff K, Beyaert R, Vandevoorde V, Haegeman G, Fiers W. Depletion of the mitochondrial electron transport abrogates the cytotoxic and gene-inductive effects of TNF. EMBO J. 1993;12:3095–104.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Shafiee G, Mohajeri-Tehrani M, Pajouhi M, Larijani B. The importance of hypoglycemia in diabetic patients. J Diabetes Metab Disord. 2012;11:17.

    PubMed  PubMed Central  Google Scholar 

  94. Shoji Y, Uedono Y, Ishikura H, Takeyama N, Tanaka T. DNA damage induced by tumour necrosis factor-alpha in L929 cells is mediated by mitochondrial oxygen radical formation. Immunology. 1995;84:543–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Shukla, V., Rehni, A., Dave, K., Dysregulated cytokine released by activated microglia in the hippocampus of diabetes associated recurrent hypoglycemic rat brain exacerbate ischemic damage, Society for Neuroscience, 45th Annual Meeting, Chicago. 2015. 499.419.

  96. Sims NR, Anderson MF. Mitochondrial contributions to tissue damage in stroke. Neurochem Int. 2002;40:511–26.

    CAS  PubMed  Google Scholar 

  97. Singh P, Jain A, Kaur G. Impact of hypoglycemia and diabetes on CNS: correlation of mitochondrial oxidative stress with DNA damage. Mol Cell Biochem. 2004;260:153–9.

    CAS  PubMed  Google Scholar 

  98. Suh SW, Gum ET, Hamby AM, Chan PH, Swanson RA. Hypoglycemic neuronal death is triggered by glucose reperfusion and activation of neuronal NADPH oxidase. J Clin Invest. 2007;117:910–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Tamborlane WV, Beck RW, Bode BW, Buckingham B, Chase HP, Clemons R, et al. Continuous glucose monitoring and intensive treatment of type 1 diabetes. N Engl J Med. 2008;359:1464–76.

    PubMed  Google Scholar 

  100. UK Hypoglycaemia Study Group. Risk of hypoglycaemia in types 1 and 2 diabetes: effects of treatment modalities and their duration. Diabetologia. 2007;50:1140–7.

    Google Scholar 

  101. Unachukwu C, Ofori S. Diabetes mellitus and cardiovascular risk. the internet. J Endocrinol. 2012;7:1–10.

    Google Scholar 

  102. Weber KK, Lohmann T, Busch K, Donati-Hirsch I, Riel R. High frequency of unrecognized hypoglycaemias in patients with type 2 diabetes is discovered by continuous glucose monitoring. Exp Clin Endocrinol Diabetes. 2007;115:491–4.

    CAS  PubMed  Google Scholar 

  103. Won SJ, Yoo BH, Kauppinen TM, Choi BY, Kim JH, Jang BG, et al. Recurrent/moderate hypoglycemia induces hippocampal dendritic injury, microglial activation, and cognitive impairment in diabetic rats. J Neuroinflammation. 2012;9:182.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Yamada KA, Rensing N, Izumi Y, De Erausquin GA, Gazit V, Dorsey DA, et al. Repetitive hypoglycemia in young rats impairs hippocampal long-term potentiation. Pediatr Res. 2004;55:372–9.

    CAS  PubMed  Google Scholar 

  105. Yeoh E, Choudhary P, Nwokolo M, Ayis S, Amiel SA. Interventions that restore awareness of hypoglycemia in adults with type 1 diabetes: a systematic review and meta-analysis. Diabetes Care. 2015;38:1592–609.

    PubMed  Google Scholar 

  106. Ying W, Wei G, Wang D, Wang Q, Tang X, Shi J, et al. Intranasal administration with NAD+ profoundly decreases brain injury in a rat model of transient focal ischemia. Front Biosci. 2007;12:2728–34.

    CAS  PubMed  Google Scholar 

  107. Zaidan E, Sims NR. Reduced activity of the pyruvate dehydrogenase complex but not cytochrome c oxidase is associated with neuronal loss in the striatum following short-term forebrain ischemia. Brain Res. 1997;772:23–8.

    CAS  PubMed  Google Scholar 

  108. Zoratti M, Szabo I. The mitochondrial permeability transition. Biochim Biophys Acta. 1995;1241:139–76.

    PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Brant Watson for critical reading of this manuscript.

Funding

The present study is supported by NIH grant NS073779 and the Evelyn F. McKnight Brain Institute. The funding agency had no role in study design; in the collection, analysis, and interpretation of data; in the writing of the manuscript; and in the decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunjan R. Dave.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Ethical Approval

All animal experiments were carried out in accordance with the National Institute of Health Guide for the Care and Use of Laboratory Animals and were approved by an institutional animal care and use committee.

Electronic Supplementary Material

ESM 1

(PDF 119 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, V., Fuchs, P., Liu, A. et al. Recurrent Hypoglycemia Exacerbates Cerebral Ischemic Damage in Diabetic Rats via Enhanced Post-Ischemic Mitochondrial Dysfunction. Transl. Stroke Res. 10, 78–90 (2019). https://doi.org/10.1007/s12975-018-0622-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-018-0622-2

Keywords

Navigation