Skip to main content

Advertisement

Log in

Molecular and Cellular Immune Responses to Ischemic Brain Injury

  • Review Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Despite extensive research into stroke pathology, there have not been any major recent advancements in stroke therapeutics. Animal models of cerebral ischemia and clinical data have been used to investigate the progressive neural injury that occurs after an initial ischemic insult. This has lead researchers to focus more on the peripheral immune response that is generated as a result of cerebral ischemia. The therapies that have been developed as a result of this research thus far have proven ineffective in clinical trials. The failure of these therapeutics in clinical trials is thought to be due to the broad immunosuppression elicited as a result of the treatments and the cerebral ischemia itself. Emerging evidence indicates a more selective modulation of the immune system following stroke could be beneficial. The spleen has been shown to exacerbate neural injury following experimental stroke and would provide a strong therapeutic target. Selecting facets of the immune system to target would allow the protective and regenerative properties of the immune response to remain intact while blunting the pro-inflammatory response generated towards the injured brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lipton P. Ischemic cell death in brain neurons. Physiol Rev. 1999;79:1431–568.

    CAS  PubMed  Google Scholar 

  2. Candelario-Jalil E, Yang Y, Rosenberg GA. Diverse roles of matrix metalloproteinases and tissue inhibitors of metalloproteinases in neuroinflammation and cerebral ischemia. Neuroscience. 2009;158(3):983–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Okuaki Y, Miyazaki H, Zeniya M, Ishikawa T, Ohkawa Y, Tsuno S, et al. Splenectomy-reduced hepatic injury induced by ischemia/reperfusion in the rat. Liver. 1996;16(3):188–94.

    Article  CAS  PubMed  Google Scholar 

  4. Ajmo Jr CT, Vernon DO, Collier L, Hall AA, Garbuzova-Davis S, Willing A, et al. The spleen contributes to stroke-induced neurodegeneration. J Neurosci Res. 2008;86:2227–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Jin R, Zhu X, Liu L, Nanda A, Granger DN, Li G. Simvastatin attenuates stroke-induced splenic atrophy and lung susceptibility to spontaneous bacterial infection in mice. Stroke: A J Cereb Circ. 2013;44(4):1135–43.

    Article  CAS  Google Scholar 

  6. Lee ST, Chu K, Jung KH, Kim SJ, Kim DH, Kang KM, et al. Anti-inflammatory mechanism of intravascular neural stem cell transplantation in haemorrhagic stroke. Brain. 2008;131(Pt 3):616–29.

    Article  PubMed  Google Scholar 

  7. Mebius RE, Kraal G. Structure and function of the spleen. Nat Rev Immunol. 2005;5(8):606–16.

    Article  CAS  PubMed  Google Scholar 

  8. Witte T, Wordelmann K, Schmidt RE. Heterogeneity of human natural killer cells in the spleen. Immunology. 1990;69(1):166–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Bakovic D, Eterovic D, Saratlija-Novakovic Z, Palada I, Valic Z, Bilopavlovic N, et al. Effect of human splenic contraction on variation in circulating blood cell counts. Clin Exp Pharmacol Physiol. 2005;32(11):944–51.

    Article  CAS  PubMed  Google Scholar 

  10. Bakovic D, Valic Z, Eterovic D, Vukovic I, Obad A, Marinovic-Terzic I, et al. Spleen volume and blood flow response to repeated breath-hold apneas. J Appl Physiol. 2003;95(4):1460–6.

    PubMed  Google Scholar 

  11. Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V, Panizzi P, et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science. 2009;325(5940):612–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Jiang H, Meng F, Li W, Tong L, Qiao H, Sun X. Splenectomy ameliorates acute multiple organ damage induced by liver warm ischemia reperfusion in rats. Surgery. 2007;141(1):32–40.

    Article  PubMed  Google Scholar 

  13. Savas MC, Ozguner M, Ozguner IF, Delibas N. Splenectomy attenuates intestinal ischemia-reperfusion-induced acute lung injury. J Pediatr Surg. 2003;38(10):1465–70.

    Article  PubMed  Google Scholar 

  14. Kara M, Tellioglu G, Sehirli O, Yildar M, Krand O, Berber I, et al. Evaluation of gadolinium pre-treatment with or without splenectomy in the setting of renal ischemia reperfusion injury in rats. Ren Fail. 2009;31(10):956–63.

    Article  CAS  PubMed  Google Scholar 

  15. Leuschner F, Panizzi P, Chico-Calero I, Lee WW, Ueno T, Cortez-Retamozo V, et al. Angiotensin-converting enzyme inhibition prevents the release of monocytes from their splenic reservoir in mice with myocardial infarction. Circ Res. 2010;107(11):1364–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Das M, Leonardo CC, Rangooni S, Mohapatra SS, Mohapatra S, Pennypacker KR. Lateral fluid percussion injury of the brain induces CCL20 inflammatory chemokine expression in rats. J Neuroinflammation. 2011;8:148.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Li M, Li F, Luo C, Shan Y, Zhang L, Qian Z, et al. Immediate splenectomy decreases mortality and improves cognitive function of rats after severe traumatic brain injury. J Trauma. 2011;71(1):141–7.

    Article  PubMed  Google Scholar 

  18. Walker PA, Shah SK, Jimenez F, Gerber MH, Xue H, Cutrone R, et al. Intravenous multipotent adult progenitor cell therapy for traumatic brain injury: preserving the blood brain barrier via an interaction with splenocytes. Exp Neurol. 2010;225(2):341–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Seifert HA, Leonardo CC, Hall AA, Rowe DD, Collier LA, Benkovic SA, et al. The spleen contributes to stroke induced neurodegeneration through interferon gamma signaling. Metab Brain Dis. 2012;27(2):131–41.

    Article  CAS  PubMed  Google Scholar 

  20. Ostrowski R, Schulte R, Nie Y, Ling T, Lee T, Manaenko A, et al. Acute splenic irradiation reduces brain injury in the rat focal ischemic stroke model. Transl Stroke Res. 2012;3:473–81. doi:10.1007/s12975-012-0206-5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Vendrame M, Cassady J, Newcomb J, Butler T, Pennypacker KR, Zigova T, et al. Infusion of human umbilical cord blood cells in a rat model of stroke dose-dependently rescues behavioral deficits and reduces infarct volume. Stroke: A J Cereb Circ. 2004;35(10):2390–5.

    Article  Google Scholar 

  22. Makinen S, Kekarainen T, Nystedt J, Liimatainen T, Huhtala T, Narvanen A, et al. Human umbilical cord blood cells do not improve sensorimotor or cognitive outcome following transient middle cerebral artery occlusion in rats. Brain Res. 2006;1123(1):207–15.

    Article  PubMed  Google Scholar 

  23. Zhang L, Li Y, Zhang C, Chopp M, Gosiewska A, Hong K. Delayed administration of human umbilical tissue-derived cells improved neurological functional recovery in a rodent model of focal ischemia. Stroke: A J Cereb Circ. 2011;42(5):1437–44.

    Article  Google Scholar 

  24. Schwarting S, Litwak S, Hao W, Bahr M, Weise J, Neumann H. Hematopoietic stem cells reduce postischemic inflammation and ameliorate ischemic brain injury. Stroke: A J Cereb Circ. 2008;39(10):2867–75.

    Article  CAS  Google Scholar 

  25. Keimpema E, Fokkens MR, Nagy Z, Agoston V, Luiten PG, Nyakas C, et al. Early transient presence of implanted bone marrow stem cells reduces lesion size after cerebral ischaemia in adult rats. Neuropathol Appl Neurobiol. 2009;35(1):89–102.

    Article  CAS  PubMed  Google Scholar 

  26. Vendrame M, Gemma C, Pennypacker KR, Bickford PC, Davis Sanberg C, Sanberg PR, et al. Cord blood rescues stroke-induced changes in splenocyte phenotype and function. Exp Neurol. 2006;199(1):191–200.

    Article  CAS  PubMed  Google Scholar 

  27. Offner H, Subramanian S, Parker SM, Wang C, Afentoulis ME, Lewis A, et al. Splenic atrophy in experimental stroke is accompanied by increased regulatory T cells and circulating macrophages. J Immunol. 2006;176(11):6523–31.

    Article  CAS  PubMed  Google Scholar 

  28. Seifert HA, Hall AA, Chapman CB, Collier LA, Willing AE, Pennypacker KR. A transient decrease in spleen size following stroke corresponds to splenocyte release into systemic circulation. J Neuroimmune Pharmacol. 2012;7(4):1017–24. doi:10.1007/s11481-012-9406-8.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Ajmo Jr CT, Collier LA, Leonardo CC, Hall AA, Green SM, Womble TA, et al. Blockade of Adrenoreceptors Inhibits the Splenic Response to Stroke. Exp Neurol. 2009;218(1):47–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Bao Y, Kim E, Bhosle S, Mehta H, Cho S. A role for spleen monocytes in post-ischemic brain inflammation and injury. J Neuroinflammation. 2010;7:92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Suda T, Sato A, Sugiura W, Chida K. Induction of MHC class II antigens on rat bronchial epithelial cells by interferon-gamma and its effect on antigen presentation. Lung. 1995;173(2):127–37.

    Article  CAS  PubMed  Google Scholar 

  32. Tsang JY, Chai JG, Lechler R. Antigen presentation by mouse CD4+ T cells involving acquired MHC class II:peptide complexes: another mechanism to limit clonal expansion? Blood. 2003;101(7):2704–10.

    Article  CAS  PubMed  Google Scholar 

  33. Sahota P, Vahidy F, Nguyen C, Bui TT, Yang B, Parsha K, et al. Changes in spleen size in patients with acute ischemic stroke: a pilot observational study. Int J Stroke. 2013;8(2):60–7.

    Article  PubMed  Google Scholar 

  34. Yu H, Adamski MG, Wagner E, Seales-Bailey C, Baird AE. Splenic measurements in ischemic stroke: assessment of baseline size. Int J Stroke. 2013;8(8):E57.

    Article  PubMed  Google Scholar 

  35. Miller DW. Immunobiology of the blood–brain barrier. J Neurovirol. 1999;5(6):570–8.

    Article  CAS  PubMed  Google Scholar 

  36. de Vries HE, Kuiper J, de Boer AG, Van Berkel TJ, Breimer DD. The blood–brain barrier in neuroinflammatory diseases. Pharmacol Rev. 1997;49(2):143–55.

    PubMed  Google Scholar 

  37. Stevens SL, Bao J, Hollis J, Lessov NS, Clark WM, Stenzel-Poore MP. The use of flow cytometry to evaluate temporal changes in inflammatory cells following focal cerebral ischemia in mice. Brain Res. 2002;932(1–2):110–9.

    Article  CAS  PubMed  Google Scholar 

  38. Leonardo CC, Hall AA, Collier LA, Ajmo CTJ, Willing AE, Pennypacker KR. Human umbilical cord blood cell therapy blocks the morphological change and recruitment of CD-11b-expressing isolectin-binding proinflammatory cells after middle cerebral artery occlusion. J Neurosci Res. 2010;88(6):1213–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Yilmaz G, Arumugam TV, Stokes KY, Granger DN. Role of T lymphocytes and interferon-gamma in ischemic stroke. Circulation. 2006;113(17):2105–12.

    Article  PubMed  Google Scholar 

  40. Hurn PD, Subramanian S, Parker SM, Afentoulis ME, Kaler LJ, Vandenbark AA, et al. T- and B-cell-deficient mice with experimental stroke have reduced lesion size and inflammation. J Cereb Blood Flow Metab: Offi J Int Soc Cereb Blood Flow Metab. 2007;27(11):1798–805.

    Article  CAS  Google Scholar 

  41. Ren X, Akiyoshi K, Grafe MR, Vandenbark AA, Hurn PD, Herson PS, et al. Myelin specific cells infiltrate MCAO lesions and exacerbate stroke severity. Metab Brain Dis. 2012;27(1):7–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Becker KJ, McCarron RM, Ruetzler C, Laban O, Sternberg E, Flanders KC, et al. Immunologic tolerance to myelin basic protein decreases stroke size after transient focal cerebral ischemia. Proc Natl Acad Sci U S A. 1997;94(20):10873–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Chang L, Chen Y, Li J, Liu Z, Wang Z, Chen J, et al. Cocaine-and amphetamine-regulated transcript modulates peripheral immunity and protects against brain injury in experimental stroke. Brain Behav Immun. 2011;25(2):260–9.

    Article  CAS  PubMed  Google Scholar 

  44. Offner H, Subramanian S, Parker SM, Afentoulis ME, Vandenbark AA, Hurn PD. Experimental stroke induces massive, rapid activation of the peripheral immune system. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2006;26(5):654–65.

    Article  CAS  Google Scholar 

  45. Liesz A, Suri-Payer E, Veltkamp C, Doerr H, Sommer C, Rivest S, et al. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med. 2009;15(2):192–9.

    Article  CAS  PubMed  Google Scholar 

  46. de Bilbao F, Arsenijevic D, Moll T, Garcia-Gabay I, Vallet P, Langhans W, et al. In vivo over-expression of interleukin-10 increases resistance to focal brain ischemia in mice. J Neurochem. 2009;110(1):12–22.

    Article  PubMed  Google Scholar 

  47. Barone FC, Arvin B, White RF, Miller A, Webb CL, Willette RN, et al. Tumor necrosis factor-alpha. A mediator of focal ischemic brain injury. Stroke: A J Cereb Circ. 1997;28(6):1233–44.

    Article  CAS  Google Scholar 

  48. Lambertsen KL, Clausen BH, Babcock AA, Gregersen R, Fenger C, Nielsen HH, et al. Microglia protect neurons against ischemia by synthesis of tumor necrosis factor. J Neurosci. 2009;29(5):1319–30.

    Article  CAS  PubMed  Google Scholar 

  49. Wang X, Feuerstein GZ, Xu L, Wang H, Schumacher WA, Ogletree ML, et al. Inhibition of tumor necrosis factor-alpha-converting enzyme by a selective antagonist protects brain from focal ischemic injury in rats. Mol Pharmacol. 2004;65(4):890–6.

    Article  CAS  PubMed  Google Scholar 

  50. Hallenbeck JM. The many faces of tumor necrosis factor in stroke. Nat Med. 2002;8(12):1363–8.

    Article  CAS  PubMed  Google Scholar 

  51. Speeckaert MM, Speeckaert R, Laute M, Vanholder R, Delanghe JR. Tumor necrosis factor receptors: biology and therapeutic potential in kidney diseases. Am J Nephrol. 2012;36(3):261–70.

    Article  CAS  PubMed  Google Scholar 

  52. Arnett HA, Mason J, Marino M, Suzuki K, Matsushima GK, Ting JP. TNF alpha promotes proliferation of oligodendrocyte progenitors and remyelination. Nat Neurosci. 2001;4(11):1116–22.

    Article  CAS  PubMed  Google Scholar 

  53. Rallidis LS, Vikelis M, Panagiotakos DB, Rizos I, Zolindaki MG, Kaliva K, et al. Inflammatory markers and in-hospital mortality in acute ischaemic stroke. Atherosclerosis. 2006;189(1):193–7.

    Article  CAS  PubMed  Google Scholar 

  54. Clark WM, Rinker LG, Lessov NS, Hazel K, Hill JK, Stenzel-Poore M, et al. Lack of interleukin-6 expression is not protective against focal central nervous system ischemia. Stroke: A J Cereb Circ. 2000;31(7):1715–20.

    Article  CAS  Google Scholar 

  55. Herrmann O, Tarabin V, Suzuki S, Attigah N, Coserea I, Schneider A, et al. Regulation of body temperature and neuroprotection by endogenous interleukin-6 in cerebral ischemia. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2003;23(4):406–15.

    Article  CAS  Google Scholar 

  56. Loddick SA, Turnbull AV, Rothwell NJ. Cerebral interleukin-6 is neuroprotective during permanent focal cerebral ischemia in the rat. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 1998;18(2):176–9.

    Article  CAS  Google Scholar 

  57. Gertz K, Kronenberg G, Kalin RE, Baldinger T, Werner C, Balkaya M, et al. Essential role of interleukin-6 in post-stroke angiogenesis. Brain. 2012;135(Pt 6):1964–80.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Kishimoto T. IL-6: from its discovery to clinical applications. Int Immunol. 2010;22(5):347–52.

    Article  CAS  PubMed  Google Scholar 

  59. Mihara M, Hashizume M, Yoshida H, Suzuki M, Shiina M. IL-6/IL-6 receptor system and its role in physiological and pathological conditions. Clin Sci (Lond). 2012;122(4):143–59.

    Article  CAS  Google Scholar 

  60. Boehm U, Klamp T, Groot M, Howard JC. Cellular responses to interferon-gamma. Annu Rev Immunol. 1997;15:749–95.

    Article  CAS  PubMed  Google Scholar 

  61. Lortat-Jacob H, Baltzer F, Grimaud JA. Heparin decreases the blood clearance of interferon-gamma and increases its activity by limiting the processing of its carboxyl-terminal sequence. J Biol Chem. 1996;271(27):16139–43.

    Article  CAS  PubMed  Google Scholar 

  62. Groom JR, Luster AD. CXCR3 ligands: redundant, collaborative and antagonistic functions. Immunol Cell Biol. 2011;89(2):207–15.

    Article  CAS  PubMed  Google Scholar 

  63. Li HL, Kostulas N, Huang YM, Xiao BG, van der Meide P, Kostulas V, et al. IL-17 and IFN-gamma mRNA expression is increased in the brain and systemically after permanent middle cerebral artery occlusion in the rat. J Neuroimmunol. 2001;116(1):5–14.

    Article  CAS  PubMed  Google Scholar 

  64. Liesz A, Zhou W, Mracsko E, Karcher S, Bauer H, Schwarting S, et al. Inhibition of lymphocyte trafficking shields the brain against deleterious neuroinflammation after stroke. Brain. 2011;134(Pt 3):704–20.

    Article  PubMed  Google Scholar 

  65. Becker KJ, Kalil AJ, Tanzi P, Zierath DK, Savos AV, Gee JM, et al. Autoimmune responses to the brain after stroke are associated with worse outcome. Stroke: A J Cereb Circ. 2011;42(10):2763–9.

    Article  CAS  Google Scholar 

  66. Meyer S, Strittmatter M, Fischer C, Georg T, Schmitz B. Lateralization in autonomic dysfunction in ischemic stroke involving the insular cortex. Neuroreport. 2004;15(2):357–61.

    Article  CAS  PubMed  Google Scholar 

  67. Cechetto DF, Wilson JX, Smith KE, Wolski D, Silver MD, Hachinski VC. Autonomic and myocardial changes in middle cerebral artery occlusion: stroke models in the rat. Brain Res. 1989;502(2):296–305.

    Article  CAS  PubMed  Google Scholar 

  68. Sanders VM, Baker RA, Ramer-Quinn DS, Kasprowicz DJ, Fuchs BA, Street NE. Differential expression of the beta2-adrenergic receptor by Th1 and Th2 clones: implications for cytokine production and B cell help. J Immunol. 1997;158(9):4200–10.

    CAS  PubMed  Google Scholar 

  69. Brait VH, Arumugam TV, Drummond GR, Sobey CG. Importance of T lymphocytes in brain injury, immunodeficiency, and recovery after cerebral ischemia. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2012;32(4):598–611. doi:10.1038/jcbfm.2012.6.

    Article  CAS  Google Scholar 

  70. Swanson MA, Lee WT, Sanders VM. IFN-gamma production by Th1 cells generated from naive CD4+ T cells exposed to norepinephrine. J Immunol. 2001;166(1):232–40.

    Article  CAS  PubMed  Google Scholar 

  71. Herrmann M, Vos P, Wunderlich MT, de Bruijn CH, Lamers KJ. Release of glial tissue-specific proteins after acute stroke: a comparative analysis of serum concentrations of protein S-100B and glial fibrillary acidic protein. Stroke: A J Cereb Circ. 2000;31(11):2670–7.

    Article  CAS  Google Scholar 

  72. Wunderlich MT, Ebert AD, Kratz T, Goertler M, Jost S, Herrmann M. Early neurobehavioral outcome after stroke is related to release of neurobiochemical markers of brain damage. Stroke: A J Cereb Circ. 1999;30(6):1190–5.

    Article  CAS  Google Scholar 

  73. Becker KJ, Kindrick DL, Lester MP, Shea C, Ye ZC. Sensitization to brain antigens after stroke is augmented by lipopolysaccharide. J Cereb Blood Flow Metab:Off J Int Soc Cereb Blood Flow Metab. 2005;25(12):1634–44.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health – National Institute of Neurological Disorders and Stroke (RO1-NS052839).

Conflict of Interest

Hilary Seifert and Keith Pennypacker declare that they have no conflict of interest and that this article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith R. Pennypacker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seifert, H.A., Pennypacker, K.R. Molecular and Cellular Immune Responses to Ischemic Brain Injury. Transl. Stroke Res. 5, 543–553 (2014). https://doi.org/10.1007/s12975-014-0349-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-014-0349-7

Keywords

Navigation