Skip to main content
Log in

Translational Research Using a Mouse Model of Intracranial Aneurysm

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

We have developed a mouse model of intracranial aneurysm that recapitulates key features of human intracranial aneurysms. In this model, spontaneous aneurysmal rupture occurs with a predictable time course. Aneurysmal rupture in this model can be easily detected by assessing neurological symptoms. Similar to human intracranial aneurysms, intracranial aneurysms in this model show an infiltration with inflammatory cells. This mouse model can be used to study the mechanisms and the potential preventive treatments for aneurysmal rupture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Brisman JL, Song JK, Newell DW. Cerebral aneurysms. N Engl J Med. 2006;355(9):928–39. doi:10.1056/NEJMra052760.

    Article  CAS  PubMed  Google Scholar 

  2. Vlak MH, Algra A, Brandenburg R, Rinkel GJ. Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis. Lancet Neurol. 2011;10(7):626–36.

    Article  PubMed  Google Scholar 

  3. Berman MF, Solomon RA, Mayer SA, Johnston SC, Yung PP. Impact of hospital-related factors on outcome after treatment of cerebral aneurysms. Stroke. 2003;34(9):2200–7. doi:10.1161/01.STR.0000086528.32334.06.

    Article  PubMed  Google Scholar 

  4. Zacharia BE, Ducruet AF, Hickman ZL, Grobelny BT, Badjatia N, Mayer SA, et al. Technological advances in the management of unruptured intracranial aneurysms fail to improve outcome in New York state. Stroke. 2011;42(10):2844–9. doi:10.1161/STROKEAHA.111.619767.

    Article  PubMed  Google Scholar 

  5. Gabriel RA, Kim H, Sidney S, McCulloch CE, Singh V, Johnston SC, et al. Ten-year detection rate of brain arteriovenous malformations in a large, multiethnic, defined population. Stroke. 2010;41(1):21–6. doi:10.1161/STROKEAHA.109.566018.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Rao VM, Parker L, Levin DC, Sunshine J, Bushee G. Use trends and geographic variation in neuroimaging: nationwide medicare data for 1993 and 1998. AJNR Am J Neuroradiol. 2001;22(9):1643–9.

    CAS  PubMed  Google Scholar 

  7. Schievink WI. Intracranial aneurysms. N Engl J Med. 1997;336(1):28–40.

    Article  CAS  PubMed  Google Scholar 

  8. Bederson JB, Awad IA, Wiebers DO, Piepgras D, Haley Jr EC, Brott T, et al. Recommendations for the management of patients with unruptured intracranial aneurysms: a statement for healthcare professionals from the Stroke Council of the American Heart Association. Stroke. 2000;31(11):2742–50.

    Article  CAS  PubMed  Google Scholar 

  9. Raaymakers TW, Rinkel GJ, Limburg M, Algra A. Mortality and morbidity of surgery for unruptured intracranial aneurysms: a meta-analysis. Stroke. 1998;29(8):1531–8.

    Article  CAS  PubMed  Google Scholar 

  10. Wiebers DO, Whisnant JP, Huston 3rd J, Meissner I, Brown Jr RD, Piepgras DG, et al. Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet. 2003;362(9378):103–10.

    Article  PubMed  Google Scholar 

  11. Nuki Y, Tsou TL, Kurihara C, Kanematsu M, Kanematsu Y, Hashimoto T. Elastase-induced intracranial aneurysms in hypertensive mice. Hypertension. 2009;54(6):1337–44. doi:10.1161/HYPERTENSIONAHA.109.138297.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Kanematsu Y, Kanematsu M, Kurihara C, Tada Y, Tsou TL, van Rooijen N, et al. Critical roles of macrophages in the formation of intracranial aneurysm. Stroke. 2011;42(1):173–8. doi:10.1161/STROKEAHA.110.590976.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Tada Y, Kanematsu Y, Kanematsu M, Nuki Y, Liang EI, Wada K, et al. A mouse model of intracranial aneurysm: technical considerations. Acta Neurochir Suppl. 2011;111:31–5. doi:10.1007/978-3-7091-0693-8_6.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Connolly Jr ES, Choudhri TF, Mack WJ, Mocco J, Spinks TJ, Slosberg J, et al. Influence of smoking, hypertension, and sex on the phenotypic expression of familial intracranial aneurysms in siblings. Neurosurgery. 2001;48(1):64–8.

    PubMed  Google Scholar 

  15. Bonita R. Cigarette smoking, hypertension and the risk of subarachnoid hemorrhage: a population-based case-control study. Stroke. 1986;17(5):831–5.

    Article  CAS  PubMed  Google Scholar 

  16. Morimoto M, Miyamoto S, Mizoguchi A, Kume N, Kita T, Hashimoto N. Mouse model of cerebral aneurysm: experimental induction by renal hypertension and local hemodynamic changes. Stroke. 2002;33(7):1911–5.

    Article  PubMed  Google Scholar 

  17. Cajander S, Hassler O. Enzymatic destruction of the elastic lamella at the mouth of cerebral berry aneurysm? An ultrastructural study with special regard to the elastic tissue. Acta Neurol Scand. 1976;53(3):171–81.

    Article  CAS  PubMed  Google Scholar 

  18. Weiss D, Taylor WR. Deoxycorticosterone acetate salt hypertension in apolipoprotein E−/− mice results in accelerated atherosclerosis: the role of angiotensin II. Hypertension. 2008;51(2):218–24.

    Article  CAS  PubMed  Google Scholar 

  19. Kanematsu Y, Kanematsu M, Kurihara C, Tsou TL, Nuki Y, Liang EI, et al. Pharmacologically induced thoracic and abdominal aortic aneurysms in mice. Hypertension. 2010;55(5):1267–74. doi:10.1161/HYPERTENSIONAHA.109.140558.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Makino H, Tada Y, Wada K, Liang EI, Chang M, Mobashery S, et al. Pharmacological stabilization of intracranial aneurysms in mice: a feasibility study. Stroke. 2012;43(9):2450–6. doi:10.1161/STROKEAHA.112.659821.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Huang Z, Huang PL, Panahian N, Dalkara T, Fishman MC, Moskowitz MA. Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science. 1994;265(5180):1883–5.

    Article  CAS  PubMed  Google Scholar 

  22. Yang G, Chan PH, Chen J, Carlson E, Chen SF, Weinstein P, et al. Human copper–zinc superoxide dismutase transgenic mice are highly resistant to reperfusion injury after focal cerebral ischemia. Stroke. 1994;25(1):165–70.

    Article  PubMed  Google Scholar 

  23. Chan PH. Oxygen radicals in focal cerebral ischemia. Brain Pathol. 1994;4(1):59–65.

    Article  CAS  PubMed  Google Scholar 

  24. Jeon H, Ai J, Sabri M, Tariq A, Shang X, Chen G, et al. Neurological and neurobehavioral assessment of experimental subarachnoid hemorrhage. BMC Neurosci. 2009;10:103. doi:10.1186/1471-2202-10-103.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Hasan DM, Mahaney KB, Brown Jr RD, Meissner I, Piepgras DG, Huston J, et al. Aspirin as a promising agent for decreasing incidence of cerebral aneurysm rupture. Stroke. 2011;42(11):3156–62. doi:10.1161/STROKEAHA.111.619411.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Tymianski M. Aspirin as a promising agent for decreasing incidence of cerebral aneurysm rupture. Stroke. 2011;42(11):3003–4. doi:10.1161/STROKEAHA.111.626762.

    Article  PubMed  Google Scholar 

  27. Hasan D, Hashimoto T, Kung D, Macdonald RL, Winn HR, Heistad D. Upregulation of cyclooxygenase-2 (COX-2) and microsomal prostaglandin E2 synthase-1 (mPGES-1) in wall of ruptured human cerebral aneurysms: preliminary results. Stroke. 2012;43(7):1964–7. doi:10.1161/STROKEAHA.112.655829.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The project described was supported by grant numbers R01NS055876 (TH) and R01NS082280 (TH) from the National Institute of Neurological Disorders and Stroke (NIH/NINDS) and the Brain Aneurysm Foundation Shirley Dudek Demmer Chair of Research (KS). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Neurological Disorders and Stroke, the National Institutes of Health, or the Brain Aneurysm Foundation.

Conflict of Interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoki Hashimoto.

Additional information

Kosuke Wada and Hiroshi Makino contributed equally to the project.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wada, K., Makino, H., Shimada, K. et al. Translational Research Using a Mouse Model of Intracranial Aneurysm. Transl. Stroke Res. 5, 248–251 (2014). https://doi.org/10.1007/s12975-013-0296-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-013-0296-8

Keywords

Navigation