Skip to main content
Log in

Guidelines for Using Mouse Global Cerebral Ischemia Models

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Mouse models of global cerebral ischemia are essential tools to study the molecular mechanisms involved in ischemic brain damage. The availability of genetically engineered mice allows examination of the role of specific proteins in brain pathology processes. However, relative to rat models, mouse global brain ischemia models are technically more challenging to produce. It is important to emphasize that occlusion of two carotid arteries only is highly inefficient to produce consistent brain damage in mice. This is mainly due to high variability in their vascular anatomy. Several approaches were developed to achieve sufficient reduction of blood flow in the mouse brain that led to consistent ischemic brain damage. We describe here the mouse ischemic models most frequently utilized in research laboratories to test the effect of genetically manipulated proteins of interest on ischemic brain injury or to assess a drug effect on ischemia-induced brain damage. The most common approach used is the bilateral common carotid occlusion that is combined with either occlusion of a third artery or with concomitant reduction of mean arterial blood pressure. Furthermore, a four-vessel occlusion model can be used or even a cardiac arrest model that has been developed for mouse. All these models have specific problems, advantages, and clinical relevance. Thus, the feasibility of using a particular model depends on the goal of the study and the outcome parameters assessed. Overall, the mouse models are valuable since they allow the study of ischemia-induced molecular mechanisms utilizing transgenic animals and also evaluate the effect of new neuroprotective compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Baughman VL, Hoffman WE, Miletich DJ, Albrecht RF, Thomas C. Neurologic outcome in rats following incomplete cerebral ischemia during halothane, isoflurane, or N2O. Anesthesiology. 1988;69(2):192–8.

    Article  PubMed  CAS  Google Scholar 

  2. Beckmann N. High resolution magnetic resonance angiography non-invasively reveals mouse strain differences in the cerebrovascular anatomy in vivo. Magn Reson Med. 2000;44(2):252–8.

    Article  PubMed  CAS  Google Scholar 

  3. Blanck TJ, Haile M, Xu F, Zhang J, Heerdt P, Veselis RA, Beckman J, Kang R, Adamo A, Hemmings H. Isoflurane pretreatment ameliorates postischemic neurologic dysfunction and preserves hippocampal Ca2+/calmodulin-dependent protein kinase in a canine cardiac arrest model. Anesthesiology. 2000;93(5):1285–93.

    Article  PubMed  CAS  Google Scholar 

  4. Bottiger BW, Schmitz B, Wiessner C, Vogel P, Hossmann KA. Neuronal stress response and neuronal cell damage after cardiocirculatory arrest in rats. J Cereb Blood Flow Metab. 1998;18:1077–87.

    Article  PubMed  CAS  Google Scholar 

  5. Bottiger BW, Teschendorf P, Krumnikl JJ, Vogel P, Galmbacher R, Schmitz B, Motsch J, Martin E, Gass P. Global cerebral ischemia due to cardiocirculatory arrest in mice causes neuronal degeneration and early induction of transcription factor genes in the hippocampus. Brain Res Mol Brain Res. 1999;65(2):135–42.

    Article  PubMed  CAS  Google Scholar 

  6. Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, Cuny GD, Mitchison TJ, Moskowitz MA, Yuan J. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol. 2005;1(2):112–9.

    Article  PubMed  CAS  Google Scholar 

  7. Horn M, Schlote W. Delayed neuronal death and delayed neuronal recovery in the human brain following global ischemia. Acta Neuropathol. 1992;85:79–87.

    Article  PubMed  CAS  Google Scholar 

  8. Elsersy H, Sheng H, Lynch JR, Moldovan M, Pearlstein RD, Warner DS. Effects of isoflurane versus fentanyl-nitrous oxide anesthesia on long-term outcome from severe forebrain ischemia in the rat. Anesthesiology. 2004;100:1160–6.

    Article  PubMed  CAS  Google Scholar 

  9. Hu BR, Park M, Martone ME, Fischer WH, Ellisman MH, Zivin JA. Assembly of proteins to postsynaptic densities after transient cerebral ischemia. J Neurosci. 1998;18:625–33.

    PubMed  CAS  Google Scholar 

  10. Hu BR, Martone ME, Jones YZ, Liu CL. Protein aggregation following transient cerebral ischemia. J Neurosci. 2000;20:3191–9.

    PubMed  CAS  Google Scholar 

  11. Fujii M, Hara H, Meng W, Vonsattel JP, Huang Z, Moskowitz MA. Strain-related differences in susceptibility to transient forebrain ischemia in SV-129 and C57black/6 mice. Stroke. 1997;28(9):1805–10. discussion 1811.

    Article  PubMed  CAS  Google Scholar 

  12. Ginsberg MD, Busto R. Rodent models of cerebral ischemia. Stroke. 1989;20(12):1627–42.

    Article  PubMed  CAS  Google Scholar 

  13. Hua F, Ma J, Li Y, Ha T, Xia Y, Kelley J, Williams DL, Browder IW, Schweitzer JB, Li C. The development of a novel mouse model of transient global cerebral ischemia. Neurosci Lett. 2006;400(1–2):69–74.

    Article  PubMed  CAS  Google Scholar 

  14. Kawaguchi M, Kimbro JR, Drummond JC, Cole DJ, Kelly PJ, Patel PM. Isoflurane delays but does not prevent cerebral infarction in rats subjected to focal ischemia. Anesthesiology. 2000;92(5):1335–42.

    Article  PubMed  CAS  Google Scholar 

  15. Kiessling M, Stumm G, Xie Y, Herdegen T, Aguzzi A, Bravo R, Gass P. Differential transcription and translation of immediate early genes in the gerbil hippocampus after transient global ischemia. J Cereb Blood Flow Metabol. 1993;13:914–24.

    Article  CAS  Google Scholar 

  16. Kitagawa K, Matsumoto M, Yang G, Mabuchi T, Yagita Y, Hori M, Yanagihara T. Cerebral ischemia after bilateral carotid artery occlusion and intraluminal suture occlusion in mice: evaluation of the patency of the posterior communicating artery. J Cereb Blood Flow Metab. 1998;18(5):570–9.

    Article  PubMed  CAS  Google Scholar 

  17. Kofler J, Hattori K, Sawada M, DeVries AC, Martin LJ, Hurn PD, Traystman RJ. Histopathological and behavioral characterization of a novel model of cardiac arrest and cardiopulmonary resuscitation in mice. J Neurosci Methods. 2004;136:33–44.

    Google Scholar 

  18. Kristian T, Siesjo BK. Calcium in ischemic cell death. Stroke. 1998;29(3):705–18.

    Article  PubMed  CAS  Google Scholar 

  19. Liu CH, Gao Y, Barrett J, Hu BR. Protein aggregation and autophagy after brain ischemia. J Neurochem. 2010;115:68–78.

    Article  PubMed  CAS  Google Scholar 

  20. Mackensen GB, Nellgard B, Miura Y, Chu CT, Dexter F, Pearlstein RD, Warner DS. Sympathetic ganglionic blockade masks beneficial effect of isoflurane on histologic outcome from near-complete forebrain ischemia in the rat. Anesthesiology. 1999;90(3):873–81.

    Article  PubMed  CAS  Google Scholar 

  21. Miura Y, Grocott HP, Bart RD, Pearlstein RD, Dexter F, Warner DS. Differential effects of anesthetic agents on outcome from near-complete but not incomplete global ischemia in the rat. Anesthesiology. 1998;89(2):391–400.

    Article  PubMed  CAS  Google Scholar 

  22. Murakami K, Kondo T, Kawase M, Chan PH. The development of a new mouse model of global ischemia: focus on the relationships between ischemia duration, anesthesia, cerebral vasculature, and neuronal injury following global ischemia in mice. Brain Res. 1998;780(2):304–10.

    Article  PubMed  CAS  Google Scholar 

  23. Onken M, Berger S, Kristian T. Simple model of forebrain ischemia in mouse. J Neurosci Methods. 2012;204:254–61.

    Article  PubMed  Google Scholar 

  24. Panahian N, Yoshida T, Huang PL, Hedley-Whyte ET, Dalkara T, Fishman MC, Moskowitz MA. Attenuated hippocampal damage after global cerebral ischemia in mice mutant in neuronal nitric oxide synthase. Neuroscience. 1996;72(2):343–54.

    Article  PubMed  CAS  Google Scholar 

  25. Pegorini S, Braida D, Verzoni C, Guerini-Rocco C, Consalez GG, Croci L, Sala M. Capsaicin exhibits neuroprotective effects in a model of transient global cerebral ischemia in Mongolian gerbils. Br J Pharmacol. 2005;144(5):727–35.

    Article  PubMed  CAS  Google Scholar 

  26. Petito CK, Feldmann E, Pulsinelli WA, Plum F. Delayed hippocampal damage in humans following cardiorespiratory arrest. Neurology. 1987;37:1281–6.

    Article  PubMed  CAS  Google Scholar 

  27. Pulsinelli WA, Brierley JB. A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke. 1979;10(3):267–72.

    Article  PubMed  CAS  Google Scholar 

  28. Pulsinelli WA, Brierley JB, Plum F. Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol. 1982;11:491–8.

    Article  PubMed  CAS  Google Scholar 

  29. Saito A, Maier CM, Narasimhan P, Nishi T, Song YS, Yu F, Liu J, Lee YS, Nito C, Kamada H, Dodd RL, Hsieh LB, Hassid B, Kim EE, Gonzalez M, Chan PH. Oxidative stress and neuronal death/survival signaling in cerebral ischemia. Mol Neurobiol. 2005;31(1–3):105–16.

    Article  PubMed  CAS  Google Scholar 

  30. Sakai H, Sheng H, Yates RB, Ishida K, Pearlstein RD, Warner DS. Isoflurane provides long-term protection against focal cerebral ischemia in the rat. Anesthesiology. 2007;106:92–9. discussion 8–10.

    Article  PubMed  CAS  Google Scholar 

  31. Sheldon RA, Sedik C, Ferriero DM. Strain-related brain injury in neonatal mice subjected to hypoxia-ischemia. Brain Res. 1998;810(1–2):114–22.

    Article  PubMed  CAS  Google Scholar 

  32. Sheng H, Laskowitz DT, Pearlstein RD, Warner DS. Characterization of a recovery global cerebral ischemia model in the mouse. J Neurosci Methods. 1999;88(1):103–9.

    Article  PubMed  CAS  Google Scholar 

  33. Smith ML, Auer RN, Siesjo BK. The density and distribution of ischemic brain injury in the rat following 2–10 min of forebrain ischemia. Acta Neuropathol. 1984;64(4):319–32.

    Article  PubMed  CAS  Google Scholar 

  34. Smith ML, Bendek G, Dahlgren N, Rosen I, Wieloch T, Siesjo BK. Models for studying long-term recovery following forebrain ischemia in the rat. 2. A 2-vessel occlusion model. Acta Neurol Scand. 1984;69(6):385–401.

    Article  PubMed  CAS  Google Scholar 

  35. Wang J, Jin H, Hua Y, Keep RF, Xi G. Role of protease-activated receptor-1 in brain injury after experimental global cerebral ischemia. Stroke. 2012;43:2476–82.

    Article  PubMed  CAS  Google Scholar 

  36. Wellons 3rd JC, Sheng H, Laskowitz DT, Burkhard Mackensen G, Pearlstein RD, Warner DS. A comparison of strain-related susceptibility in two murine recovery models of global cerebral ischemia. Brain Res. 2000;868(1):14–21.

    Article  PubMed  CAS  Google Scholar 

  37. Yang G, Kitagawa K, Matsushita K, Mabuchi T, Yagita Y, Yanagihara T, Matsumoto M. C57BL/6 strain is most susceptible to cerebral ischemia following bilateral common carotid occlusion among seven mouse strains: selective neuronal death in the murine transient forebrain ischemia. Brain Res. 1997;752(1–2):209–18.

    Article  PubMed  CAS  Google Scholar 

  38. Yonekura I, Kawahara N, Nakatomi H, Furuya K, Kirino T. A model of global cerebral ischemia in C57 BL/6 mice. J Cereb Blood Flow Metab. 2004;24(2):151–8.

    Article  PubMed  Google Scholar 

  39. Zanelli SA, Solenski NJ, Rosenthal RE, Fiskum G. Mechanisms of ischemic neuroprotection by acetyl-L-carnitine. Ann N Y Acad Sci. 2005;1053:153–61.

    Article  PubMed  CAS  Google Scholar 

  40. Zhen G, Dore S. Optimized protocol to reduce variable outcomes for the bilateral common carotid artery occlusion model in mice. J Neurosci Methods. 2007;166(1):73–80.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by U.S. Veterans Affairs Merit grant BX000917 and Maryland Stem Cell Research Fund grant to TK, and U.S. Veterans Affairs Merit grant BX001696-01, NIH R01 NS040407, American Heart Association EIA 0940042N to B. Hu.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tibor Kristian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kristian, T., Hu, B. Guidelines for Using Mouse Global Cerebral Ischemia Models. Transl. Stroke Res. 4, 343–350 (2013). https://doi.org/10.1007/s12975-012-0236-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-012-0236-z

Keywords

Navigation