Skip to main content

Advertisement

Log in

Excitatory and Mitogenic Signaling in Cell Death, Blood–brain Barrier Breakdown, and BBB Repair after Intracerebral Hemorrhage

  • Review Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Intracerebral hemorrhage (ICH) results in the release of a large number of endogenous molecules, including glutamate, Ca2+, ROS, thrombin, heme, iron, TNF-α, and others. These molecules participate in excitatory and mitogenic signaling transduction in which N-methyl-d-aspartate (NMDA) receptors and Src family kinases (SFKs) are implicated. Mitogenic signaling initiates the cell cycle for normal cell division of microglia and neural progenitor cells, whereas aberrant mitogenic signaling causes toxicity, killing neurons, astrocytes, and brain microvascular endothelial cells in neurological diseases including ICH. In this review, we summarize (1) how SFKs modulate NMDA receptors to kill neurons following ICH and (2) how SFKs modulate mitogenic signaling transduction to kill neurons and play a role in disrupting the blood–brain barrier (BBB) immediately following ICH and in repairing the BBB during the recovery phases weeks following ICH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Thiex R, Tsirka SE. Brain edema after intracerebral hemorrhage: mechanisms, treatment options, management strategies, and operative indications. Neurosurg Focus. 2007;22(5):E6.

    Article  PubMed  Google Scholar 

  2. Thiex R, Weis J, Krings T, Barreiro S, Yakisikli-Alemi F, Gilsbach JM, et al. Addition of intravenous N-methyl-D-aspartate receptor antagonists to local fibrinolytic therapy for the optimal treatment of experimental intracerebral hemorrhages. J Neurosurg. 2007;106(2):314–20.

    Article  PubMed  CAS  Google Scholar 

  3. Hossain MI, Kamaruddin MA, Cheng HC. Aberrant regulation and function of Src-family tyrosine kinases—their potential contributions to glutamate-induced neurotoxicity. Clin Exp Pharmacol Physiol. 2012. doi:10.1111/j.1440-1681.2011.05621.x.

  4. Liu DZ, Cheng XY, Ander BP, Xu H, Davis RR, Gregg JP, et al. Src kinase inhibition decreases thrombin-induced injury and cell cycle re-entry in striatal neurons. Neurobiol Dis. 2008;30(2):201–11.

    Article  PubMed  Google Scholar 

  5. Liu DZ, Ander BP, Sharp FR. Cell cycle inhibition without disruption of neurogenesis is a strategy for treatment of central nervous system diseases. Neurobiol Dis. 2010;37:549–57.

    Article  PubMed  CAS  Google Scholar 

  6. Liu DZ, Ander BP. Cell cycle inhibition without disruption of neurogenesis is a strategy for treatment of aberrant cell cycle diseases: an update. Sci World J, 2012, (in press).

  7. Liu DZ, Ander BP. Cell cycle phase transitions: signposts for aberrant cell cycle reentry in dying mature neurons. J Cytol Histol. 2011;2:5.

    Google Scholar 

  8. Ardizzone TD, Lu A, Wagner KR, Tang Y, Ran R, Sharp FR. Glutamate receptor blockade attenuates glucose hypermetabolism in perihematomal brain after experimental intracerebral hemorrhage in rat. Stroke. 2004;35(11):2587–91.

    Article  PubMed  CAS  Google Scholar 

  9. Groveman BR, Feng S, Fang XQ, Pflueger M, Lin SX, Bienkiewicz EA, et al. The regulation of N-methyl-D-aspartate receptors by Src kinase. FEBS J. 2012;279(1):20–8.

    Article  PubMed  CAS  Google Scholar 

  10. Ardizzone TD, Zhan X, Ander BP, Sharp FR. SRC kinase inhibition improves acute outcomes after experimental intracerebral hemorrhage. Stroke. 2007;38(5):1621–5.

    Article  PubMed  CAS  Google Scholar 

  11. Sharp F, Liu DZ, Zhan X, Ander BP. Intracerebral hemorrhage injury mechanisms: glutamate neurotoxicity, thrombin, and Src. Acta Neurochir Suppl. 2008;105:43–6.

    Article  PubMed  CAS  Google Scholar 

  12. Oda H, Kumar S, Howley PM. Regulation of the Src family tyrosine kinase Blk through E6AP-mediated ubiquitination. Proc Natl Acad Sci USA. 1999;96(17):9557–62.

    Article  PubMed  CAS  Google Scholar 

  13. Biscardi JS, Ishizawar RC, Silva CM, Parsons SJ. Tyrosine kinase signalling in breast cancer: epidermal growth factor receptor and c-Src interactions in breast cancer. Breast Cancer Res. 2000;2(3):203–10.

    Article  PubMed  CAS  Google Scholar 

  14. Grimmler M, Wang Y, Mund T, Cilensek Z, Keidel EM, Waddell MB, et al. Cdk-inhibitory activity and stability of p27Kip1 are directly regulated by oncogenic tyrosine kinases. Cell. 2007;128(2):269–80.

    Article  PubMed  CAS  Google Scholar 

  15. Kasahara K, Nakayama Y, Nakazato Y, Ikeda K, Kuga T, Yamaguchi N. Src signaling regulates completion of abscission in cytokinesis through ERK/MAPK activation at the midbody. J Biol Chem. 2007;282(8):5327–39.

    Article  PubMed  CAS  Google Scholar 

  16. Liu Z, Falola J, Zhu X, Gu Y, Kim LT, Sarosi GA, et al. Antiproliferative effects of Src inhibition on medullary thyroid cancer. J Clin Endocrinol Metab. 2004;89(7):3503–9.

    Article  PubMed  CAS  Google Scholar 

  17. Mishra R, Wang Y, Simonson MS. Cell cycle signaling by endothelin-1 requires Src nonreceptor protein tyrosine kinase. Mol Pharmacol. 2005;67(6):2049–56.

    Article  PubMed  CAS  Google Scholar 

  18. Taylor SJ, Shalloway D. The cell cycle and c-Src. Curr Opin Genet Dev. 1993;3(1):26–34.

    Article  PubMed  CAS  Google Scholar 

  19. Liu DZ, Ander BP, Xu H, Shen Y, Kaur P, Deng W, et al. Blood–brain barrier breakdown and repair by Src after thrombin-induced injury. Ann Neurol. 2010;67(4):526–33.

    Article  PubMed  CAS  Google Scholar 

  20. Liu DZ, Sharp FR. The dual role of SRC kinases in intracerebral hemorrhage. Acta Neurochir Suppl. 2011;111:77–81.

    Article  PubMed  Google Scholar 

  21. Copani A, Condorelli F, Caruso A, Vancheri C, Sala A, Giuffrida Stella AM, et al. Mitotic signaling by beta-amyloid causes neuronal death. FASEB J. 1999;13(15):2225–34.

    PubMed  CAS  Google Scholar 

  22. Varvel NH, Bhaskar K, Patil AR, Pimplikar SW, Herrup K, Lamb BT. Abeta oligomers induce neuronal cell cycle events in Alzheimer's disease. J Neurosci. 2008;28(43):10786–93.

    Article  PubMed  CAS  Google Scholar 

  23. Williamson R, Scales T, Clark BR, Gibb G, Reynolds CH, Kellie S, et al. Rapid tyrosine phosphorylation of neuronal proteins including tau and focal adhesion kinase in response to amyloid-beta peptide exposure: involvement of Src family protein kinases. J Neurosci. 2002;22(1):10–20.

    PubMed  CAS  Google Scholar 

  24. Wang H, Reiser G. Thrombin signaling in the brain: the role of protease-activated receptors. Biol Chem. 2003;384(2):193–202.

    Article  PubMed  CAS  Google Scholar 

  25. Ohnishi M, Katsuki H, Fujimoto S, Takagi M, Kume T, Akaike A. Involvement of thrombin and mitogen-activated protein kinase pathways in hemorrhagic brain injury. Exp Neurol. 2007;206(1):43–52.

    Article  PubMed  CAS  Google Scholar 

  26. Guan J, Luo Y, Denker BM. Purkinje cell protein-2 (Pcp2) stimulates differentiation in PC12 cells by Gbetagamma-mediated activation of Ras and p38 MAPK. Biochem J. 2005;392(Pt 2):389–97.

    PubMed  CAS  Google Scholar 

  27. Segarra J, Balenci L, Drenth T, Maina F, Lamballe F. Combined signaling through ERK, PI3K/AKT, and RAC1/p38 is required for met-triggered cortical neuron migration. J Biol Chem. 2006;281(8):4771–8.

    Article  PubMed  CAS  Google Scholar 

  28. Lopez-Bergami P, Ronai Z. Requirements for PKC-augmented JNK activation by MKK4/7. Int J Biochem Cell Biol. 2008;40(5):1055–64.

    Article  PubMed  CAS  Google Scholar 

  29. Dwivedi Y, Pandey GN. Effects of treatment with haloperidol, chlorpromazine, and clozapine on protein kinase C (PKC) and phosphoinositide-specific phospholipase C (PI-PLC) activity and on mRNA and protein expression of PKC and PLC isozymes in rat brain. J Pharmacol Exp Ther. 1999;291(2):688–704.

    PubMed  CAS  Google Scholar 

  30. Zhu X, Rottkamp CA, Boux H, Takeda A, Perry G, Smith MA. Activation of p38 kinase links tau phosphorylation, oxidative stress, and cell cycle-related events in Alzheimer disease. J Neuropathol Exp Neurol. 2000;59(10):880–8.

    PubMed  CAS  Google Scholar 

  31. Khurana V, Lu Y, Steinhilb ML, Oldham S, Shulman JM, Feany MB. TOR-mediated cell-cycle activation causes neurodegeneration in a Drosophila tauopathy model. Curr Biol. 2006;16(3):230–41.

    Article  PubMed  CAS  Google Scholar 

  32. Xing B, Xin T, Hunter RL, Bing G. Pioglitazone inhibition of lipopolysaccharide-induced nitric oxide synthase is associated with altered activity of p38 MAP kinase and PI3K/Akt. J Neuroinflammation. 2008;5:4.

    Article  PubMed  Google Scholar 

  33. Goody RJ, Beckham JD, Rubtsova K, Tyler KL. JAK-STAT signaling pathways are activated in the brain following reovirus infection. J Neurovirol. 2007;13(4):373–83.

    Article  PubMed  CAS  Google Scholar 

  34. Li N, Wang C, Wu Y, Liu X, Cao X. Ca2+/calmodulin-dependent protein kinase II promotes cell cycle progression by directly activating MEK1 and subsequently modulating p27 phosphorylation. J Biol Chem. 2009;284(5):3021–7.

    Article  PubMed  CAS  Google Scholar 

  35. Mao LM, Tang QS, Wang JQ. Regulation of extracellular signal-regulated kinase phosphorylation in cultured rat striatal neurons. Brain Res Bull. 2009;78(6):328–34.

    Article  PubMed  CAS  Google Scholar 

  36. de Bernardo S, Canals S, Casarejos MJ, Solano RM, Menendez J, Mena MA. Role of extracellular signal-regulated protein kinase in neuronal cell death induced by glutathione depletion in neuron/glia mesencephalic cultures. J Neurochem. 2004;91(3):667–82.

    Article  PubMed  Google Scholar 

  37. Copani A, Nicoletti F. Cell-cycle mechanisms and neuronal cell death. New York: Kluwer Academic; 2005.

    Book  Google Scholar 

  38. Qian JY, Leung A, Harding P, LaPointe MC. PGE2 stimulates human brain natriuretic peptide expression via EP4 and p42/44 MAPK. Am J Physiol Heart Circ Physiol. 2006;290(5):H1740–6.

    Article  PubMed  CAS  Google Scholar 

  39. Fiebich BL, Schleicher S, Spleiss O, Czygan M, Hull M. Mechanisms of prostaglandin E2-induced interleukin-6 release in astrocytes: possible involvement of EP4-like receptors, p38 mitogen-activated protein kinase and protein kinase C. J Neurochem. 2001;79(5):950–8.

    Article  PubMed  CAS  Google Scholar 

  40. Meissirel C, Ruiz de Almodovar C, Knevels E, Coulon C, Chounlamountri N, Segura I, et al. VEGF modulates NMDA receptors activity in cerebellar granule cells through Src-family kinases before synapse formation. Proc Natl Acad Sci USA. 2011;108(33):13782–7.

    Article  PubMed  CAS  Google Scholar 

  41. Rosenberg GA. Matrix metalloproteinases and their multiple roles in neurodegenerative diseases. Lancet Neurol. 2009;8(2):205–16.

    Article  PubMed  CAS  Google Scholar 

  42. Xiao L, Hu C, Feng C, Chen Y. Switching of N-methyl-D-aspartate (NMDA) receptor-favorite intracellular signal pathways from ERK1/2 protein to p38 mitogen-activated protein kinase leads to developmental changes in NMDA neurotoxicity. J Biol Chem. 2011;286(23):20175–93.

    Article  PubMed  CAS  Google Scholar 

  43. Centeno C, Repici M, Chatton JY, Riederer BM, Bonny C, Nicod P, et al. Role of the JNK pathway in NMDA-mediated excitotoxicity of cortical neurons. Cell Death Differ. 2007;14(2):240–53.

    Article  PubMed  CAS  Google Scholar 

  44. Jantas D, Szymanska M, Budziszewska B, Lason W. An involvement of BDNF and PI3-K/Akt in the anti-apoptotic effect of memantine on staurosporine-evoked cell death in primary cortical neurons. Apoptosis. 2009;14(7):900–12.

    Article  PubMed  CAS  Google Scholar 

  45. Yu XM, Askalan R, Keil 2nd GJ, Salter MW. NMDA channel regulation by channel-associated protein tyrosine kinase Src. Science. 1997;275(5300):674–8.

    Article  PubMed  CAS  Google Scholar 

  46. Salter MW, Kalia LV. Src kinases: a hub for NMDA receptor regulation. Nat Rev Neurosci. 2004;5(4):317–28.

    Article  PubMed  CAS  Google Scholar 

  47. Trepanier CH, Jackson MF, MacDonald JF. Regulation of NMDA receptors by the tyrosine kinase Fyn. FEBS J. 2012;279(1):12–9.

    Article  PubMed  CAS  Google Scholar 

  48. Choi UB, Xiao S, Wollmuth LP, Bowen ME. Effect of Src kinase phosphorylation on disordered C-terminal domain of N-methyl-D-aspartic acid (NMDA) receptor subunit GluN2B protein. J Biol Chem. 2011;286(34):29904–12.

    Article  PubMed  CAS  Google Scholar 

  49. Heidinger V, Manzerra P, Wang XQ, Strasser U, Yu SP, Choi DW, et al. Metabotropic glutamate receptor 1-induced upregulation of NMDA receptor current: mediation through the Pyk2/Src-family kinase pathway in cortical neurons. J Neurosci. 2002;22(13):5452–61.

    PubMed  CAS  Google Scholar 

  50. Bernabeu R, Sharp FR. NMDA and AMPA/kainate glutamate receptors modulate dentate neurogenesis and CA3 synapsin-I in normal and ischemic hippocampus. J Cereb Blood Flow Metab. 2000;20(12):1669–80.

    Article  PubMed  CAS  Google Scholar 

  51. Liu J, Solway K, Messing RO, Sharp FR. Increased neurogenesis in the dentate gyrus after transient global ischemia in gerbils. J Neurosci. 1998;18(19):7768–78.

    PubMed  CAS  Google Scholar 

  52. Persidsky Y, Ramirez SH, Haorah J, Kanmogne GD. Blood–brain barrier: structural components and function under physiologic and pathologic conditions. J Neuroimmune Pharmacol. 2006;1(3):223–36.

    Article  PubMed  Google Scholar 

  53. Banerjee S, Bhat MA. Neuron-glial interactions in blood–brain barrier formation. Annu Rev Neurosci. 2007;30:235–58.

    Article  PubMed  CAS  Google Scholar 

  54. Ohab JJ, Fleming S, Blesch A, Carmichael ST. A neurovascular niche for neurogenesis after stroke. J Neurosci. 2006;26(50):13007–16.

    Article  PubMed  CAS  Google Scholar 

  55. Palmer TD, Willhoite AR, Gage FH. Vascular niche for adult hippocampal neurogenesis. J Comp Neurol. 2000;425(4):479–94.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of NIH grant NS054652 (FRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da-Zhi Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, DZ., Sharp, F.R. Excitatory and Mitogenic Signaling in Cell Death, Blood–brain Barrier Breakdown, and BBB Repair after Intracerebral Hemorrhage. Transl. Stroke Res. 3 (Suppl 1), 62–69 (2012). https://doi.org/10.1007/s12975-012-0147-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-012-0147-z

Keywords

Navigation