Skip to main content

Advertisement

Log in

Protein Biomarkers for Traumatic and Ischemic Brain Injury: From Bench to Bedside

  • Review Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Stroke is the second leading cause of death worldwide and the third leading cause of death in the USA. A clinically useful biomarker for the diagnosis of stroke does not currently exist. Biomarkers could improve stroke care by allowing early diagnosis by non-expert clinical providers, serial monitoring of patients, and rapid assessment of severity of brain injury. With the introduction of highly advanced multidimensional separation techniques coupled with high throughput genomics/proteomics platforms, several components of the pathophysiological and biochemical pathways have been elucidated in the areas of brain trauma. A major outcome of these approaches is the discovery of biomarkers that would have important applications in diagnosis, prognosis, and even development of experimental neuroprotective drugs that have been used in different paradigms of brain injury. In this paper, we reviewed the recent advances of current and novel brain injury protein biomarkers and their utilities in different models of brain injury with an emphasis on stroke, an area that has been understudied. This will include the utility of neuroproteomics/neurosystems biology analysis as a novel discipline leading to the identification of novel biomarkers that can reach the pipeline of bench side. Additionally, an outline of biomarker-based management of traumatic brain injury and stroke patient assessments of therapeutic interventions has been included. Finally, comparison of current biomarker occurrence between preclinical models and biomarker data from human clinical studies for stroke has been summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Saatman KE, et al. Classification of traumatic brain injury for targeted therapies. J Neurotrauma. 2008;25(7):719–38.

    Article  PubMed  Google Scholar 

  2. Wang KK, et al. Neuroprotection targets after traumatic brain injury. Curr Opin Neurol. 2006;19(6):514–9.

    Article  PubMed  Google Scholar 

  3. Svetlov SI, et al. Biomarkers of blast-induced neurotrauma: profiling molecular and cellular mechanisms of blast brain injury. J Neurotrauma. 2009;26(6):913–21.

    Article  PubMed  Google Scholar 

  4. Kobeissy FH, et al. Neuroproteomics and systems biology-based discovery of protein biomarkers for traumatic brain injury and clinical validation. Prot Clin Appl. 2008;2(10–11):1467–83.

    Article  CAS  Google Scholar 

  5. Wang KK, et al. Proteomic identification of biomarkers of traumatic brain injury. Expert Rev Proteomics. 2005;2(4):603–14.

    Article  PubMed  CAS  Google Scholar 

  6. Haskins WE, et al. Rapid discovery of putative protein biomarkers of traumatic brain injury by SDS-PAGE-capillary liquid chromatography-tandem mass spectrometry. J Neurotrauma. 2005;22(6):629–44.

    Article  PubMed  Google Scholar 

  7. Papa L, Robinson GMW, Oli MW, Robicsek SA, Gabrielli A, Robertson CS, Wang KKW, Hayes RL. Use of biomarkers for diagnosis and management of traumatic brain injury patients. Expert Opin Med Diagn. 2008;2(8):1–9.

    Article  Google Scholar 

  8. Hochholzer W, Morrow DA, Giugliano RP. Novel biomarkers in cardiovascular disease. Am Heart J. 2010;160(4):583–94.

    Article  PubMed  CAS  Google Scholar 

  9. Velagaleti RS, et al. Relations of biomarkers of extracellular matrix remodeling to incident cardiovascular events and mortality. Arterioscler Thromb Vasc Biol. 2010;30(11):2283–8.

    Article  PubMed  CAS  Google Scholar 

  10. Singh D, et al. Sputum neutrophils as a biomarker in COPD: findings from the ECLIPSE study. Respir Res. 2010;11:77.

    Article  PubMed  Google Scholar 

  11. Denslow N, et al. Application of proteomics technology to the field of neurotrauma. J Neurotrauma. 2003;20(5):401–7.

    Article  PubMed  Google Scholar 

  12. Pelinka LE, et al. Nonspecific increase of systemic neuron-specific enolase after trauma: clinical and experimental findings. Shock. 2005;24(2):119–23.

    Article  PubMed  CAS  Google Scholar 

  13. Berger RP, et al. Serum biomarker concentrations and outcome after pediatric traumatic brain injury. J Neurotrauma. 2007;24(12):1793–801.

    Article  PubMed  Google Scholar 

  14. Berger RP, et al. Identification of inflicted traumatic brain injury in well-appearing infants using serum and cerebrospinal markers: a possible screening tool. Pediatrics. 2006;117(2):325–32.

    Article  PubMed  Google Scholar 

  15. Johnsson P, et al. Neuron-specific enolase increases in plasma during and immediately after extracorporeal circulation. Ann Thorac Surg. 2000;69(3):750–4.

    Article  PubMed  CAS  Google Scholar 

  16. Berger RP, et al. Serum neuron-specific enolase, S100B, and myelin basic protein concentrations after inflicted and noninflicted traumatic brain injury in children. J Neurosurg. 2005;103(1 Suppl):61–8.

    PubMed  Google Scholar 

  17. Ingebrigtsen T, Romner B. Biochemical serum markers for brain damage: a short review with emphasis on clinical utility in mild head injury. Restor Neurol Neurosci. 2003;21(3–4):171–6.

    PubMed  CAS  Google Scholar 

  18. Papa L, et al. Ubiquitin C-terminal hydrolase is a novel biomarker in humans for severe traumatic brain injury. Crit Care Med. 2010;38(1):138–44.

    Article  PubMed  CAS  Google Scholar 

  19. Dambinova SA, et al. Blood test detecting autoantibodies to N-methyl-d-aspartate neuroreceptors for evaluation of patients with transient ischemic attack and stroke. Clin Chem. 2003;49(10):1752–62.

    Article  PubMed  CAS  Google Scholar 

  20. Petzold A. Neurofilament phosphoforms: surrogate markers for axonal injury, degeneration and loss. J Neurol Sci. 2005;233(1–2):183–98.

    Article  PubMed  CAS  Google Scholar 

  21. Petzold A, Shaw G. Comparison of two ELISA methods for measuring levels of the phosphorylated neurofilament heavy chain. J Immunol Methods. 2007;319(1–2):34–40.

    Article  PubMed  CAS  Google Scholar 

  22. Kobeissy FH, et al. Novel differential neuroproteomics analysis of traumatic brain injury in rats. Mol Cell Prot. 2006;5(10):1887–98.

    Article  CAS  Google Scholar 

  23. Ottens AK, et al. Neuroproteomics: a biochemical means to discriminate the extent and modality of brain injury. J Neurotrauma. 2010;27(10):1837–52.

    Article  PubMed  Google Scholar 

  24. Yao C, et al. P43/pro-EMAPII: a potential biomarker for discriminating traumatic versus ischemic brain injury. J Neurotrauma. 2009;26(8):1295–305.

    Article  PubMed  Google Scholar 

  25. Yao X, Liu J, McCabe JT. Alterations of cerebral cortex and hippocampal proteasome subunit expression and function in a traumatic brain injury rat model. J Neurochem. 2008;104(2):353–63.

    PubMed  CAS  Google Scholar 

  26. Liu MC, et al. Comparing calpain- and caspase-3-mediated degradation patterns in traumatic brain injury by differential proteome analysis. Biochem J. 2006;394(Pt 3):715–25.

    PubMed  CAS  Google Scholar 

  27. Brophy GM, et al. alphaII-Spectrin breakdown product cerebrospinal fluid exposure metrics suggest differences in cellular injury mechanisms after severe traumatic brain injury. J Neurotrauma. 2009;26(4):471–9.

    Article  PubMed  Google Scholar 

  28. Lewis SB, et al. Identification and preliminary characterization of ubiquitin C terminal hydrolase 1 (UCHL1) as a biomarker of neuronal loss in aneurysmal subarachnoid hemorrhage. J Neurosci Res. 2010;88(7):1475–84.

    PubMed  CAS  Google Scholar 

  29. Svetlov SI, et al. Morphologic and biochemical characterization of brain injury in a model of controlled blast overpressure exposure. J Trauma. 2010;69(4):795–804.

    Article  PubMed  CAS  Google Scholar 

  30. Serbest G, et al. Temporal profiles of cytoskeletal protein loss following traumatic axonal injury in mice. Neurochem Res. 2007;32(12):2006–14.

    Article  PubMed  CAS  Google Scholar 

  31. Siman R, et al. A panel of neuron-enriched proteins as markers for traumatic brain injury in humans. J Neurotrauma. 2009;26(11):1867–77.

    Article  PubMed  Google Scholar 

  32. Ehrenreich H, et al. Circulating damage marker profiles support a neuroprotective effect of erythropoietin in ischemic stroke patients. Mol Med. 2011. doi:10.2119/molmed.2011.00259.

  33. Allard L, et al. PARK7 and nucleoside diphosphate kinase A as plasma markers for the early diagnosis of stroke. Clin Chem. 2005;51(11):2043–51.

    Article  PubMed  CAS  Google Scholar 

  34. Foerch C, et al. Elevated serum S100B levels indicate a higher risk of hemorrhagic transformation after thrombolytic therapy in acute stroke. Stroke. 2007;38(9):2491–5.

    Article  PubMed  CAS  Google Scholar 

  35. Lakhan SE, Kirchgessner A, Hofer M. Inflammatory mechanisms in ischemic stroke: therapeutic approaches. J Transl Med. 2009;7:97.

    Article  PubMed  Google Scholar 

  36. Reynolds MA, et al. Early biomarkers of stroke. Clin Chem. 2003;49(10):1733–9.

    Article  PubMed  CAS  Google Scholar 

  37. Grant SG. Systems biology in neuroscience: bridging genes to cognition. Curr Opin Neurobiol. 2003;13(5):577–82.

    Article  PubMed  CAS  Google Scholar 

  38. Grant SG, Blackstock WP. Proteomics in neuroscience: from protein to network. J Neurosci. 2001;21(21):8315–8.

    PubMed  CAS  Google Scholar 

  39. Chen SS, et al. Bioinformatics for traumatic brain injury: proteimic data mining. In: Pardalos PM, Boginski VL, Vazacopoulos A, editors. Data mining in biomedicine. New York: Springer; 2007. p. 1–26.

    Google Scholar 

  40. Beltrao P, Kiel C, Serrano L. Structures in systems biology. Curr Opin Struct Biol. 2007;17(3):378–84.

    Article  PubMed  CAS  Google Scholar 

  41. Narayan RK, et al. Clinical trials in head injury. J Neurotrauma. 2002;19(5):503–57.

    Article  PubMed  Google Scholar 

  42. Flynn RW, MacWalter RS, Doney AS. The cost of cerebral ischaemia. Neuropharmacology. 2008;55(3):250–6.

    Article  PubMed  CAS  Google Scholar 

  43. Zaleska MM, et al. The development of stroke therapeutics: promising mechanisms and translational challenges. Neuropharmacology. 2009;56(2):329–41.

    Article  PubMed  CAS  Google Scholar 

  44. Donnan GA, et al. How to make better use of thrombolytic therapy in acute ischemic stroke. Nat Rev Neurol. 2011;7(7):400–9.

    Article  PubMed  CAS  Google Scholar 

  45. Whiteley W, Tseng MC, Sandercock P. Blood biomarkers in the diagnosis of ischemic stroke: a systematic review. Stroke. 2008;39(10):2902–9.

    Article  PubMed  Google Scholar 

  46. Kavalci C, et al. Value of biomarker-based diagnostic test in differential diagnosis of hemorrhagic-ischemic stroke. Bratisl Lek Listy. 2011;112(7):398–401.

    PubMed  CAS  Google Scholar 

  47. Herrmann M, et al. Release of glial tissue-specific proteins after acute stroke: a comparative analysis of serum concentrations of protein S-100B and glial fibrillary acidic protein. Stroke. 2000;31(11):2670–7.

    Article  PubMed  CAS  Google Scholar 

  48. Datta A, Jingru Q, Khor TH, Teo MT, Heese K, Sze SK. Quantitative neuroproteomics of an in vivo rodent model of focal cerebral ischemia reperfusion injury reveals a temporal regulation of novel pathophysiological molecular markers. J Proteome Res. 2011;10(11):5199–213.

    Article  PubMed  CAS  Google Scholar 

  49. Missler U, Wiesmann M, Friedrich C, Kaps M. S-100 protein and neuron-specific enolase concentrations in blood as indicators of infarction volume and prognosis in acute ischemic stroke. Stroke. 2003;28(10):1956–60.

    Article  Google Scholar 

  50. Raabe A, Grolms C, Seifert V. Serum markers of brain damage and outcome prediction in patients after severe head injury. Br J Neurosurg. 1999;13:56–9.

    Article  PubMed  CAS  Google Scholar 

  51. Romner B, Ingebrigtsen T, Kongstad P, Borgesen SE. Traumatic brain damage: serum S-100 protein measurements related to neuroradiological findings. J Neurotrauma. 2002;17(8):641–7.

    Article  Google Scholar 

  52. Marchi N, Rasmussen P, Kapural M, Fazio V, Kight K, Mayberg MR, et al. Peripheral markers of brain damage and blood–brain barrier dysfunction. Restor Neurol Neurosci. 2003;21(3–4):109–21.

    Google Scholar 

  53. Blyth BJ, Farhavar A, Gee C, Hawthorn B, He H, Nayak A, Stöcklein V, Bazarian JJ. Validation of serum markers for blood-brain barrier disruption in traumatic brain injury. J Neurotrauma. 2009;26(9):1497–1507.

    Google Scholar 

  54. Yamazaki Y, Yada K, Morii S, Kitahara T, Ohwada T. Diagnostic significance of serum neuron-specific enolase and myelin basic protein assay in patients with acute head injury. Surg Neurol. 1995;43(3):267–70.

    Article  PubMed  CAS  Google Scholar 

  55. Ross SA, Cunningham RT, Johnston CF, Rowlands BJ. Neuron-specific enolase as an aid to outcome prediction in head injury. Br J Neurosurg. 1996;10(5):471–6.

    Article  PubMed  CAS  Google Scholar 

  56. Pelinka LE, Kroepfl A, Schmidhammer R, Krenn M, Buchinger W, Redl H, Raabe A. Glial fibrillary acidic protein in serum after traumatic brain injury and multiple trauma. J Trauma. 2004a;57(5):1006–12.

    Article  CAS  Google Scholar 

  57. Pelinka LE, Kroepfl A, Leixnering M, Buchinger W, Raabe A, Redl H. GFAP versus S100B in serum after traumatic brain injury: relationship to brain damage and outcome. J Neurotrauma. 2004b;21(11):1553–61.

    Article  Google Scholar 

  58. Vos PE, Lamers KJ, Hendriks JC, van Haaren M, Beems T, Zimmerman C, et al. Glial and neuronal proteins in serum predict outcome after severe traumatic brain injury. Neurology. 2004;62(8):1303–10.

    Google Scholar 

  59. Lumpkins KM, Bochicchio GV, Keledjian K, Simard JM, McCunn M. Scalea T. Glial fibrillary acidic protein is highly correlated with brain injury. J Trauma. 2008;65(4):778–84.

    Article  PubMed  CAS  Google Scholar 

  60. Dvorak F, Haberer I, Sitzer M, Foerch C. Characterisation of the diagnostic window of serum glial fibrillary acidic protein for the differentiation of intracerebral haemorrhage and ischaemic stroke. Cerebrovasc Dis. 2009;27(1):37–41.

    Article  PubMed  CAS  Google Scholar 

  61. Papa L, Lewis L, Falk J, Zhang Z, Silvestri S, Giordano P, et al. Glial fibrillary acidic protein breakdown product as a novel serum biomarker for mild and moderate traumatic brain Injury. Ann Emerg Med. (in press)

  62. Mondello S, Papa L, Buki A, Bullock MR, Czeiter E, Tortella FC, Wang KK, Hayes RL. Neuronal and glial markers are differently associated with computed tomography findings and outcome in patients with severe traumatic brain injury: a case control study. Crit Care. 2011;15(3):R156.

    Article  PubMed  Google Scholar 

  63. Pike BR, Flint J, Dutta S, Johnson E, Wang KKW, Hayes RL. Accumulation of non-erythroid αII-spectrin and calpain-cleaved αII-spectrin breakdown products in cerebrospinal fluid after TBI in rats. J Neurochem. 2001;78(6):1297–306.

    Article  PubMed  CAS  Google Scholar 

  64. Ringger NC, O’Steen BE, Brabham JG, Siler X, Pineda J, Wang KKW, Hayes RL. A novel marker for traumatic brain injury: CSF αII-spectrin breakdown product levels. J Neurotrauma. 2004;21(10):1443–56.

    Google Scholar 

  65. Siman R, Zhang C, Roberts VL, Pitts-Kiefer A, Neumar RW. Novel surrogate markers for acute brain damage: cerebrospinal fluid levels corrrelate with severity of ischemic neurodegeneration in the rat. J Cereb Blood Flow Metab. 2005;25(11):1433–44.

    Article  PubMed  Google Scholar 

  66. Siman R, McIntosh TK, Soltesz KM, Chen Z, Neumar RW, Roberts VL. Proteins released from degenerating neurons are surrogate markers for acute brain damage. Neurobiol Dis. 2004;16(2):311–20.

    Article  PubMed  CAS  Google Scholar 

  67. Pineda JA, Lewis SB, Valadka SB, Papa L, Hannay HJ, Heaton S, et al. Clinical significance of αII-spectrin breakdown products in CSF after severe TBI. J Neurotrauma. 2007;24(2):354–66.

    Google Scholar 

  68. Mondello S, Robicsek SA, Gabrielli A, Tepas J, Robinson C, Buki A, et al. αII-spectrin breakdown products (SBDPs): diagnosis and outcome in severe traumatic brain injury patients. J Neurotrauma. 2010;27(7):1203–13.

    Google Scholar 

  69. Zemlan FP, Jauch EC, Mulchahey JJ, Gabbita SP, Rosenberg WS, Speciale SG, Zuccarello M. C-tau biomarker of neuronal damage in severe brain injured patients: association with elevated intracranial pressure and clinical outcome. Brain Res. 2002;947(1):131–9.

    Article  PubMed  CAS  Google Scholar 

  70. Shaw GJ, Jauch EC, Zemlan FP. Serum cleaved tau protein levels and clinical outcome in adult patients with closed head injury. Ann Emerg Med. 2002;39(3):254–7.

    Article  PubMed  Google Scholar 

  71. Maier B, Laurer HL, Rose S, Buurman WA, Marzi I. Physiological levels of pro- and anti-inflammatory mediators in cerebrospinal fluid and plasma: a normative study. J Neurotrauma. 2005;22(7):822–35.

    Article  PubMed  Google Scholar 

  72. Chiaretti A, Antonelli A, Mastrangelo A, Pezzotti P, Tortorolo L, Tosi F, Genovese O. Interleukin-6 and nerve growth factor upregulation correlates with improved outcome in children with severe traumatic brain injury. J Neurotrauma. 2008;25(3):225–34.

    Article  PubMed  Google Scholar 

  73. Folkersma H, Brevé JJ, Tilders FJ, Cherian L, Robertson CS, Vandertop WP. Cerebral microdialysis of interleukin (IL)-1beta and IL-6: extraction efficiency and production in the acute phase after severe traumatic brain injury in rats. Acta Neurochir (Wien). 2008;150(12):1277–84.

    Article  Google Scholar 

  74. Pelsers MM, Glatz JF. Detection of brain injury by fatty acid-binding proteins. Clin Chem Lab Med. 2005;43(8):802–9.

    Article  PubMed  CAS  Google Scholar 

  75. Pelsers MM, Hanhoff T, Van der Voort D, Arts B, Peters M, Ponds R, et al. Brain- and heart-type fatty acid-binding proteins in the brain: tissue distribution and clinical utility. Clin Chem. 2004;50(9):1568–75.

    Google Scholar 

  76. Petzold A. Neurofilament phosphoforms: surrogate markers for axonal injury, degeneration and loss. J Neurol Sci. 2005;233(1–2):183–98.

    Article  PubMed  CAS  Google Scholar 

  77. Norgren N, Sundström P, Svenningsson A, Rosengren L, Stigbrand T, Gunnarsson M. Neurofilament and glial fibrillary acidic protein in multiple sclerosis. Neurology. 2004;63(9):1586–90.

    PubMed  CAS  Google Scholar 

  78. Liu MC, Akinyi L, Larner SF, Oli M, Zheng WR, Kobeissy F, et al. Ubiquitin C-terminal hydrolase-L1 as a novel biomarker for ischemic and traumatic brain injury in rats. Euro J Neurosci. 2010;31(4):722–32.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin K. W. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Mondello, S., Kobeissy, F. et al. Protein Biomarkers for Traumatic and Ischemic Brain Injury: From Bench to Bedside. Transl. Stroke Res. 2, 455–462 (2011). https://doi.org/10.1007/s12975-011-0137-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-011-0137-6

Keywords

Navigation