Skip to main content
Log in

Identifying and exploring significant genomic regions associated with soybean yield, seed fatty acids, protein and oil

  • Research Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

Soybean [Glycine max (L.) Merrill] yield and seed fatty acids, protein, and oil content are important traits for which an improved understanding of significant genomic regions would be useful. To accomplish this, a soybean population consisting of 203 F5 derived recombinant inbred lines (RILs) was developed and genotyped with 11,633 polymorphic single nucleotide polymorphisms (SNPs). Each RIL was grown in a single plot at Knoxville, TN in 2010; followed by replicated, multi-location field trials in 2013 and 2014. The data from 2010, 2013, and 2014 were analyzed together in order to detect quantitative trait loci (QTL) for these traits, and 30 total QTLs were detected. Five QTLs are candidates for confirmed status and one QTL is a candidate for positional confirmation. Many of the genes with mutations in close proximity to the fatty acid QTLs are involved in biological processes for fatty acids and/or lipids and could be considered possible candidate genes. Similarly, genes with mutations in genomic regions near yield, protein, and oil QTLs were plentiful and may contribute to the variation observed in these traits. Except for yield and stearic acid, each trait displayed pleiotropic effects with other traits in this study. Notable are the pleiotropic effects for oleic and linolenic acid on chromosomes 9, 13, and 19. Overall, the findings from this research contribute new information to the genetic understanding of soybean yield and seed fatty acids, protein and oil content. This understanding will be useful in making trait improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bernard RL, Cremeens CR. 1988. Registration of ‘Williams 82’ soybean. Crop Sci. 28: 1027–1028

    Google Scholar 

  • Bernard RL, Lindahl DA. 1972. Registration of ‘Williams’ soybean. Crop Sci. 12: 716

    Article  Google Scholar 

  • Bilyeu K, Gillman JD, LeRoy AR. 2011. Novel FAD3 mutant allele combinations produce soybeans containing 1% linolenic acid in the seed oil. Crop Sci. 51: 259–264

    Article  Google Scholar 

  • Boersma JG, Gillman JD, Bilyeu K, Ablett GR, Grainger C, Rajcan I. 2012. New mutations in a delta-9-stearoyl-acyl carrier protein desaturase gene associated with enhanced stearic acid levels in soybean seed. Crop Sci. 52: 1736–1742

    Article  CAS  Google Scholar 

  • Bolon Y, Haun WJ, Xu WW, Grant D, Stacey MG, Nelson RT, Gerhardt DJ, Jeddeloh JA, Stacey G, Muehlbauer GJ, Orf JH, Naeve SL, Stupar RM, Vance CP. 2011. Phenotypic and genomic analyses of fast neutron mutant population resource in soybean. Plant Physiol. 156: 240–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brim CA. 1966. A modified pedigree method of selection in soybeans. Crop Sci. 6: 220

    Article  Google Scholar 

  • Broman KW, Wu H, Sen Ś, Churchill GA. 2003. R/qtl: QTL mapping in experimental crosses. Bioinformatics 19: 889–890

    Article  CAS  PubMed  Google Scholar 

  • Browning BL, Browning SR. 2009. A unified approach to genotype imputation and haplotype phase inference for large data sets of trios and unrelated individuals. Am. J. Hum. Genet. 84: 210–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Browning SR, Browning BL. 2007. Rapid and accurate haplotype phasing and missing data inference for whole genome association studies using localized haplotype clustering. Am. J. Hum. Genet. 81: 1084–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardinal AJ, Whetten R, Wang S, Auclair J, Hyten D, Cregan P, Bachlava E, Gillman J, Ramirez M, Dewey R, Upchurch G, Miranda L, Burton JW. 2014. Mapping the low palmitate fap1 mutation and validation of its effects in soybean oil and agronomic traits in three soybean populations. Theor. Appl. Genet. 127: 97–111

    Article  CAS  PubMed  Google Scholar 

  • Churchill GA, Doerge RW. 1994. Empirical threshold values for quantitative trait mapping. Genetics 138: 963–971

    CAS  PubMed  PubMed Central  Google Scholar 

  • Diers BW, Cary TR, Thomas DJ, Colgrove A, Niblack T. 2010. Registration of ‘LD00-2817P’ germplasm line with resistance to soybean cyst nematode from PI 437654. J. Plant Regist. 4: 141–144

    Article  Google Scholar 

  • Diers BW, Cary TR, Thomas DJ, Nickell CD. 2006. Registration of ‘LD00-3309’ soybean. Crop Sci. 46: 1384

    Article  Google Scholar 

  • Dupuis J, Siegmun D. 1999. Statistical methods for mapping quantitative trait loci from a dense set of markers. Genetics 151: 373–386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fallen BD, Rainey K, Sams CE, Kopsell DA, Pantalone VR. 2012. Evaluation of agronomic and seed characteristics in elevated oleic acid soybean lines in the south-eastern US. J. Am. Oil Chem. Soc. 89: 1333–1343

    CAS  Google Scholar 

  • Federal Register. 2015. Final determination regarding partially hydrogenated oils. https://www.federalregister.gov/articles/2015/06/17/2015-14883/final-determination-regarding-partiallyhydrogenated-oils (accessed 24 July 2015)

    Google Scholar 

  • Fehr WR, Caviness CE. 1977. Stages of soybean development. Special Report, Agriculture and Home Economics Experiment Station, Iowa State University, 1977, issue 80, p 11

    Google Scholar 

  • Gillman JD, Bilyeu KD. 2012. Genes and alleles for quality traits on the soybean genetic/physical map. In: R.F. Wilson (ed) Designing soybean for 21st century markets. AOCS Press, Urbana, IL, pp 67–96

    Chapter  Google Scholar 

  • Gillman JD, Stacy MG, Cui Y, Berg HR, Stacey G. 2014. Deletions of the SACPD-C locus elevate seed stearic acid but also result in fatty acid and morphological alterations in nitrogen fixing nodules. BMC Plant Biol. 14: 143

    Article  PubMed  PubMed Central  Google Scholar 

  • Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS. 2012. Phytozome: a comparative platform for green plant genomics. Nucl. Acids Res. 40: D1178–D1186

    Article  CAS  PubMed  Google Scholar 

  • Grant D, Nelson RT, Cannon SB, Shoemaker RC. 2010. SoyBase, the USDA-ARS soybean genetics and genomics database. Nucl. Acids Res. 38: D843–D846

    Article  CAS  PubMed  Google Scholar 

  • Harrell Jr FE. 2015. Package ‘Hmisc’. http://biostat.mc.vander bilt.edu/

    Google Scholar 

  • Hmisc Haun WJ, Hyten DL, Xu WW, Gerhardt DJ, Albert TJ, Richmond T, Jeddeloh JA, Jia G, Springer NM, Vance CP, Stupar RM. 2011. Plant Physiol. 155: 645–655

    Article  Google Scholar 

  • Hyten DL. 2002. QTL mapping and identification of GxE interactions of agronomic and seed quality traits in soybean. Thesis, University of Tennessee

    Google Scholar 

  • Hyten DL, Pantalone VR, Sams CE, Saxton AM, Landau-Ellis D, Stefaniak TR, Schmidt ME. 2004a. Seed quality QTL in a prominent soybean population. Theor. Appl. Genet. 109: 552–561

    Article  CAS  PubMed  Google Scholar 

  • Hyten DL, Pantalone VR, Saxton AM, Schmidt ME, Sams CE. 2004b. MoleculaR mapping and identification of soybean fatty acid modifier quantitative trait loci. J. Am. Oil Chem. Soc. 81: 1115–1118

    Article  CAS  Google Scholar 

  • Kabelka EA, Diers BW, Fehr WR, LeRoy AR, Baianu IC, You T, Neece DJ, Nelson RL. 2004. Putative alleles for increased yield from soybean plant introductions. Crop Sci. 44: 784–791

    Article  Google Scholar 

  • Kim H, Kim Y, Kim S, Son B, Choi Y, Kang J, Park Y, Cho Y, Cho I. 2010. Analysis of quantitiative trait loci (QTLs) for seed size and fatty acid composition using recombinant inbred lines in soybean. J. Life Sci. 20: 1186–1192

    Article  CAS  Google Scholar 

  • Kinney AJ. 1996. Development of genetically engineered soybean oils for food application. J. Food Lipids 3: 273–292

    Article  CAS  Google Scholar 

  • Kinney AJ, Clemente TE. 2005. Modifying soybean oil for enhanced performance in biodiesel blends. Fuel Pro. Technol. 86: 1137–1147

    Article  CAS  Google Scholar 

  • Kris-Etherton PM, Yu S. 1997. Individual fatty acid effects on plasma lipids and lipoproteins: Human studies. Am. J. Clin. Nutr. 65: S1628–S1644

    Google Scholar 

  • Lee JD, Bilyeu KD, Pantalone VR, Gillen AM, So YS, Shannon JG. 2012. Environmental stability of oleic acid concentration in seed oil for soybean lines with FAD2-1A and FAD2-1B mutant genes. Crop Sci. 52: 1290–1297

    Article  CAS  Google Scholar 

  • Li H, Zhao T, Wang Y, Yu D, Chen S, Zhou R, Gai J. 2011. Genetic structure composed of additive QTL, epistatic QTL pairs and collective unmapped minor QTL conferring oil content and fatty acid components of soybeans. Euphytica 182: 117–132

    Article  Google Scholar 

  • Martínez O, Curnow RN. 1992. Estimating the locations and sizes of the effects of quantitative trait loci using flanking markers. Theor. Appl. Genet. 85: 480–488

    Article  PubMed  Google Scholar 

  • Nyquist WE. 1991. Estimation of heritability and prediction of selection response in plant populations. Crit. Rev. Plant Sci. 10: 235–322

    Article  Google Scholar 

  • Pantalone VR, Allen FL, Landau-Ellis D. 2003. Registration of ‘5601T’ soybean. Crop Sci. 43: 1123–1124

    Article  Google Scholar 

  • Pantalone VR, Allen FL, Landau-Ellis D. 2004. Registration of ‘5002T’ soybean. Crop Sci. 44: 1483–1484

    Article  Google Scholar 

  • Pantalone VR, Wilson RF, Novitzky WP, Burton JW. 2002. Genetic regulation of elevated stearic acid concentration in soybean oil. J. Am. Oil Chem. Soc. 79: 543–553

    Article  Google Scholar 

  • Panthee DR, Pantalone VR, Sams CE, Saxton AM, West DR, Orf JH, Killam AS. 2006a. Quantitative trait loci controlling sulfur containing amino acids, methionine and cysteine, in soybean seeds. Theor. Appl. Genet. 112: 546–553

    Article  CAS  PubMed  Google Scholar 

  • Panthee DR, Pantalone VR, Saxton AM. 2006b. Modifier QTL for fatty acid composition in soybean oil. Euphytica 152: 67–73

    Article  CAS  Google Scholar 

  • Panthee DR, Pantalone VR, West DR, Saxton AM, Sams CE. 2005. Quantitative trait loci for seed protein and oil concentration, and seed size in soybean. Crop Sci. 45: 2015–2022

    Article  CAS  Google Scholar 

  • Pham AT, Harris DK, Buck J, Hoskins A, Serrano J, Abdel-Haleem H, Cregan P, Song QJ, Boerma HR, Li Z. 2015. Fine mapping and characterization of candidate genes that control resistance to Cercospora sojina K. Hara in two soybean germplasm accessions. PLoS ONE 10: e0126753

    Article  PubMed  PubMed Central  Google Scholar 

  • Pham AT, Lee JD, Shannon JG, Bilyeu KD. 2010. Mutant alleles of FAD2-1A and FAD2-1B combine to produce soybeans with the high oleic acid seed oil trait. BMC Plant Biol. 10: 195

    Article  PubMed  PubMed Central  Google Scholar 

  • R Core Team. 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

    Google Scholar 

  • SAS Institute Inc. 2002-2012. Cary, NC, USA. SAS 9.4

  • Smallwood CJ, Nyinyi CN, Kopsell DA, Sams CE, West DR, Chen P, Kantartzi SK, Cregan PB, Hyten DL, Pantalone VR. 2014. Detection and confirmation of quantitative trait loci for soybean seed isoflavones. Crop Sci. 54: 1–12

    Article  Google Scholar 

  • Smith TJ, Camper HM. 1973. Registration of Essex Soybean (Reg. No. 97). Crop Sci. 13: 495

    Article  Google Scholar 

  • Song Q, Hyten DL, Jia G, Quigley CV, Fickus EW, Nelson RL, Cregan PB. 2013. Development and evaluation of SoySNP50K, a high-density genotyping array for soybean. PLoS ONE 8: e54985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song Q, Jenkins J, Jia G, Hyten DL, Pantalone V, Jackson SA, Schmutz J, Cregan PB. 2016. Construction of high resolution genetic linkage maps to improve the soybean genome sequence assembly Glyma1.01. BMC Genomics 17: 33

    Article  PubMed  PubMed Central  Google Scholar 

  • SoyBase and the Soybean Breeder’s Toolbox. 2007. QTL nomenclature. http://www.soybase.org/resources/QTL.php. accessed 26 July 2015

    Google Scholar 

  • Spencer MM, Landau-Ellis D, Meyer EJ, Pantalone VR. 2004. Molecular markers associated with linolenic acid content in soybean. J. Am. Oil Chem. Soc. 81: 559562

    Article  Google Scholar 

  • USDA, ARS, National Genetic Resources Program. Germplasm Resources Information Network - (GRIN) [Online Database]. National Germplasm Resources Laboratory, Beltsville, Maryland. URL: http://www.ars-grin.gov.4/cgi-bin/npgs/html/index.pl?language=en (24 July 2015)

  • Wiggins BT. 2012. Heritability and genetic gain of seed protein, oil, and yield among RIL of soybean. M.S. thesis. Univ. of Tennessee, Knoxville, TN, USA

    Google Scholar 

  • Wilson RF. 2004. Seed composition. In HR Boerma HR, JE Specht. eds. Soybeans: Improvement, production, and uses. 3rd ed. ASA, CSSA, and SSSA, Madison, WI pp 621–678

    Google Scholar 

  • Wimmer V, Albrecht T, Auinger HJ, Schön CC. 2012. Synbreed: A framework for the analysis of genomic prediction using R. Bioinformatics. 28: 2086–2087

    Article  CAS  PubMed  Google Scholar 

  • Yaklich RW, Vinyard B, Camp M, Douglass S. 2002. Analysis of seed protein and oil from soybean northern and southern region uniform tests. Crop Sci. 42: 1504–1515

    Article  Google Scholar 

  • Zeng Z, Kao C, Basten C. 1999. Estimating the genetic architecture of quantitative traits. Genet. Res. 74: 279–289

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Smallwood.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smallwood, C.J., Gillman, J.D., Saxton, A.M. et al. Identifying and exploring significant genomic regions associated with soybean yield, seed fatty acids, protein and oil. J. Crop Sci. Biotechnol. 20, 243–253 (2017). https://doi.org/10.1007/s12892-017-0020-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-017-0020-0

Key words

Navigation