Skip to main content

Advertisement

Log in

Establishing species-specific sexing markers suitable for non-invasive samples of species lacking genomic resources: an example using the highly endangered common hamster Cricetus cricetus

  • Technical Note
  • Published:
Conservation Genetics Resources Aims and scope Submit manuscript

Abstract

Here we present an approach to establish species-specific genetic markers for sex identification suitable for non-invasive samples. Such markers are not yet available for the endangered common hamster (Cricetus cricetus) because of the lack of genomic resources. Using Y chromosome conserved anchored tagged sequences (YCATS) exonic primers, we obtained Y-chromosomal sequences from hamsters and sympatric rodent species. From this, we designed hamster-specific primers targeting two short Y-chromosomal intron fragments and included them in microsatellite multiplex reactions, using autosomal loci also as amplification controls. The method yielded highly consistent results. The approach can be easily applied to development of sex markers in species for which there are no genome sequences available and thus aid conservation genetics efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  • Ahlering MA, Hailer F, Roberts MT, Foley C (2011) A simple and accurate method to sex savannah, forest and Asian elephants using noninvasive sampling techniques. Mol Ecol Res 11:831–834

    Article  Google Scholar 

  • Beja-Pereira A, Oliveira R, Alves PC, Schwartz MK, Luikart G (2009) Advancing ecological understandings through technological transformations in noninvasive genetics. Mol Ecol Res 9:1279–1301

    Article  Google Scholar 

  • Bidon T, Frosch C, Eiken HG, Kutschera VE, Hagen SB, Aarnes SG, Fain SR, Janke A, Hailer F (2013) A sensitive and specific multiplex PCR approach for sex identification of ursine and tremarctine bears suitable for non-invasive samples. Mol Ecol Res 13:362–368

    Article  CAS  Google Scholar 

  • Greminger MP, Kruetzen M, Schelling C, Pienkowska-Schelling A, Wandeler P (2010) The quest for Y-chromosomal markers–methodological strategies for mammalian non-model organisms. Mol Ecol Res 10:409–420

    Article  CAS  Google Scholar 

  • Hedmark E, Flagstad Ø, Segerström P, Persson J, Landa A, Ellegren H (2004) DNA-based individual and sex identification from wolverine (Gulo gulo) faeces and urine. Conserv Genet 5:405–410

    Article  CAS  Google Scholar 

  • Hellborg L, Ellegren H (2003) Y chromosome conserved anchored tagged sequences (YCATS) for the analysis of mammalian male-specific DNA. Mol Ecol 12:283–291

    Article  CAS  PubMed  Google Scholar 

  • La Haye MJJ, Neumann K, Koelewijn HP (2012) Strong decline of gene diversity in local populations of the highly endangered Common hamster (Cricetus cricetus) in the Western part of its European range. Conserv Genet 13:311–322

    Article  Google Scholar 

  • Meinig H, Buschmann A, Reiners TE, Neukirchen M, Balzer S, Petermann R (2014) Der Status des Feldhamsters (Cricetus cricetus) in Deutschland. Natur Landschaft 89:338–343

    Google Scholar 

  • O’Brien J (2015) Saving the common hamster (Cricetus cricetus) from extinction in Alsace (France): potential flagship conservation or an exercise in futility? Hystrix 26:89–94

    Google Scholar 

  • Reiners TE, Encarnação JA, Wolters V (2011) An optimized hair trap for non-invasive genetic studies of small cryptic mammals. Eur J Wildlife Res 57:991–995

    Article  Google Scholar 

  • Reiners TE, Eidenschenk J, Neumann K, Nowak C (2014) Preservation of genetic diversity in a wild and captive population of a rapidly declining mammal, the Common hamster of the French Alsace region. Mamm Biol 79:240–246

    Article  Google Scholar 

  • Sastre N, Francino O, Lampreave G, Bologov VV, López-Martín JM, Sánchez A, Ramírez O (2009) Sex identification of wolf (Canis lupus) using non-invasive samples. Conserv Genet 10:555–558

    Article  CAS  Google Scholar 

  • Seddon JM (2005) Canid-specific primers for molecular sexing using tissue or non-invasive samples. Conserv Genet 6:147–149

    Article  Google Scholar 

  • Sugimoto T, Nagata J, Aramilev VV, Belozor A, Higashi S, McCullough DR (2006) Species and sex identification from faecal samples of sympatric carnivores, Amur leopard and Siberian tiger, in the Russian Far East. Conserv Genet 7:799–802

    Article  Google Scholar 

  • Untergrasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40:e115

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias E. Reiners.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 83 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reiners, T.E., Fuchs, M., Hailer, F. et al. Establishing species-specific sexing markers suitable for non-invasive samples of species lacking genomic resources: an example using the highly endangered common hamster Cricetus cricetus . Conservation Genet Resour 9, 253–255 (2017). https://doi.org/10.1007/s12686-016-0664-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12686-016-0664-2

Keywords

Navigation