Skip to main content
Log in

Development of polymorphic microsatellite loci for the rattlesnake species Crotalus atrox, C. cerastes, and C. scutulatus (Viperidae: Crotalinae) and cross-species amplification of microsatellite markers in Crotalus and Sistrurus species

  • Technical Note
  • Published:
Conservation Genetics Resources Aims and scope Submit manuscript

Abstract

We provide details on 46 microsatellite loci for Crotalus and Sistrurus rattlesnake species. We isolated 14, five, and four novel polymorphic species-specific microsatellite markers for Crotalus atrox, C. scutulatus, and C. cerastes, respectively. We observed seven to 36 alleles per locus. Additionally, we provide data on the cross-species amplification of previously published microsatellite markers for Crotalus and Sisturus species. Subsets of novel and cross-species amplified microsatellite markers were used to genotype populations of C. atrox, C. cerastes, and C. scutulatus in Southern Arizona. The numbers of alleles per locus in the combined marker sets range from three to 38 (C. atrox: 8–37, C. scutulatus: 3–35, C. cerastes: 4–38). Many novel and existing microsatellite markers cross-species amplified successfully. Marker sets of 20 or more polymorphic microsatellites provide high resolution for population genetics studies. Markers used in this study will likely be informative in additional Crotalus species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Anderson CD (2006) Utility of a set of microsatellite primers developed for the massasauga rattlesnake (Sistrurus catenatus) for population genetic studies of the timber rattlesnake (Crotalus horridus). Mol Ecol Notes 6:514–517

    Article  CAS  Google Scholar 

  • Brookfield J (1996) A simple new method for estimating null allele frequency from heterozygote deficiency. Mol Ecol 5:453–455

    PubMed  CAS  Google Scholar 

  • Brownstein M, Carpten J, Smith J (1996) Modulation of non-templated nucleotide addition by Taq DNA polymerase: primer modifications that facilitate genotyping. Biotechniques 20:1004–1010

    PubMed  CAS  Google Scholar 

  • Bushar LM, Maliga M, Reinert HK (2001) Cross-species amplification of Crotalus horridus microsatellites and their application in phylogenetic analysis. J Herpetol 35:532–537

    Article  Google Scholar 

  • Chakraborty R, De Andrade M, Daiger S, Budowle B (1992) Apparent heterozygote deficiencies observed in DNA typing data and their implications in forensic applications. Ann Hum Genet 56:45–47

    Article  PubMed  CAS  Google Scholar 

  • Clark R, Brown W, Stechert R, Zamudio K (2009) Roads, interrupted dispersal, and genetic diversity in Timber rattlesnakes. Conserv Biol 24:1059–1069

    Article  Google Scholar 

  • Gibbs HL, Prior K, Parent C (1998) Characterization of DNA microsatellite loci from a threatened snake: the eastern massasauga rattlesnake (Sistrurus c. catenatus) and their use in population studies. J Hered 89:169–173

    Article  CAS  Google Scholar 

  • Glenn TC, Schable NA (2005) Isolating microsatellite DNA loci. Methods Enzymol 395:202–222

    Article  PubMed  CAS  Google Scholar 

  • Goldberg CS, Edwards T, Kaplan ME, Goode M (2003) PCR primers for microsatellite loci in the tiger rattlesnake (Crotalus tigris, Viperidae). Mol Ecol Notes 3:539–541

    Article  CAS  Google Scholar 

  • Hamilton MB, Pincus EL, Di Fiore A, Flescher RC (1999) Universal linker and ligation procedures for construction of genomic DNA libraries enriched for microsatellites. Biotechniques 27:500–507

    PubMed  CAS  Google Scholar 

  • Hauswaldt JS, Glenn TC (2003) Mircosetallite DNA loci from the diamondback terrapin (Malaclemys terrapin). Mol Ecol Notes 3:174–176

    Article  CAS  Google Scholar 

  • Holycross AT, Douglas ME, Higbee JR, Bogden RH (2002) Isolation and characterization of microsatellite loci from a threatened rattlesnake (New Mexico Ridge-nosed Rattlesnake, Crotalus willardi obscurus). Mol Ecol Notes 2:537–539

    Article  CAS  Google Scholar 

  • Lukoschek V, Avise JC (2011) Development of ten polymorphic microsatellite loci for the sea snake Hydrophis elegans (Elapidae: Hydrophiinae) and cross-species amplification for fifteen marine hydrophiine species. Conserv Genet Resour 3:497–501

    Article  Google Scholar 

  • Miller KA, Chapple DG, Towns DR, Ritchie PA, Nelson NJ (2009) Assessing genetic diversity for conservation management: a case study of a threatened reptile. Anim Conserv 12:163–171

    Article  Google Scholar 

  • Munguia-Vega A, Pelz-Serrano K, Goode M, Culver M (2009) Eleven new microsatellite loci for the tiger rattlesnake (Crotalus tigris). Mol Ecol Res 9:1267–1270

    Article  CAS  Google Scholar 

  • Murphy R, Fu J, Lathrop A, Feltham J, Kovac V (2002) Phylogeny of the Rattlesnakes (Crotalus and Sistrurus) inferred from sequences of five mitochondrial DNA genes. In: Schuett GW, Höggren M, Douglas ME, Greene HW (eds) Biology of the Vipers. Eagle Mountain Publishing, Eagle Mountain, pp 69–92

    Google Scholar 

  • Oyler-McCance SJ, John J, Parker JM, Anderson SH (2005) Characterization of microsatellite loci isolated in midget faded rattlesnake (Crotalus viridis concolor). Mol Ecol Notes 5:452–453

    Article  CAS  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenisms. J Hered 86:248–249

    Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Kraetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386

    Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234

    Article  PubMed  CAS  Google Scholar 

  • Stapley J, Hayes CM, Webb JK, Keogh JS (2005) Novel microsatellite loci identified from the Australian eastern small-eyed snake (Elapidae: Rhinocephalus nigrescens) and cross species amplification in the related genus Suta. Mol Ecol Notes 5:54–56

    Article  CAS  Google Scholar 

  • Van Oosterhout C, Hutchinson W, Wills D, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by The Department of Molecular and Cellular Biology at the University of Arizona and the Arizona Research Laboratories’ University of Arizona Genetics Core (UAGC). We thank Taylor Edwards, Matt Kaplan, Ryan Sprissler (all UAGC), Melanie Culver (School of Natural Resources and the Environment), and Ted Weinert for resources and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Werner Herrmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pozarowski, K., Bryan, D.S., Bosse, R. et al. Development of polymorphic microsatellite loci for the rattlesnake species Crotalus atrox, C. cerastes, and C. scutulatus (Viperidae: Crotalinae) and cross-species amplification of microsatellite markers in Crotalus and Sistrurus species. Conservation Genet Resour 4, 955–961 (2012). https://doi.org/10.1007/s12686-012-9682-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12686-012-9682-x

Keywords

Navigation