Skip to main content
Log in

Electroanalytical Determination of Sudan I Using Gold Nanoparticle/Graphene Nanoribbons-Modified Glassy Carbon Electrode

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

In this study, gold nanoparticle-decorated graphene nanoribbons were prepared using thiol bridge. The obtained nanomaterials were characterized by transmission electron microscopy (TEM) and X-ray photoelectron microscopy, and they were used for modifying the surface of glassy carbon electrode (AuNP-GNR/GC), which is characterized using cyclic voltammetry and electrochemical impedance spectroscopy. The electroanalytical analysis of the AuNP-GNR/GC electrode was performed. The content of an azo dye, Sudan I, was determined by differential pulse voltammetry. Optimum conditions for Sudan I determination were specified; accordingly, the lower detection limit was found to be 1 nM (S/N = 3) over the concentration range of 0.01–75 μM (R2 = 0.9964). The accuracy and precision of the developed method were confirmed by intra-day and inter-day measurements. The effects of 1000 μM Na+, K+, Mg2+, Cl, Cd2+, Pb2+, Fe3+, Ni2+, Zn2+, Al3+ ions, and glucose, glycine, ascorbic acid, dopamine, and uric acid, which are possible interferants, were investigated. The interference was in the range of −4.71 to +4.02% and acceptable. Regarding actual samples, tomato sauce, ketchup, and hot sauce purchased from the markets were analyzed using the standard addition procedure. The recovery of spiked samples was observed to be between 95.3 and 104%.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Stiborova, V. Martinek, H. Rydlova, P. Hodek, E. Frei, Sudan I is a potential carcinogen for humans: evidence for its metabolic activation and detoxication by human recombinant cytochrome P450 1A1 and liver microsomes. Cancer Res. 62, 5678–5684 (2002)

    CAS  PubMed  Google Scholar 

  2. H. Lin, G. Li, K. Wu, Electrochemical determination of Sudan I using montmorillonite calcium modified carbon paste electrode. Food Chem. 107, 531–536 (2008)

    Article  CAS  Google Scholar 

  3. M. Elyasi, M.A. Khalilzadeh, H. Karimi-Maleh, High sensitive voltammetric sensor based on Pt/CNTs nanocomposite modified ionic liquid carbon paste electrode for determination of Sudan I in food samples. Food Chem. 141, 4311–4317 (2013)

    Article  CAS  Google Scholar 

  4. B. Liu, C. Yin, M. Wang, Electrochemical determination of Sudan I in food products using a carbon nanotube-ionic liquid composite modified electrode. Food Addit. Contam. Part A 31, 1818–1825 (2014)

    Article  CAS  Google Scholar 

  5. D. Thomas, A.E. Vikraman, T. Jos, K.G. Kumar, Kinetic approach in the development of a gold nanoparticle-based voltammetric sensor for Sudan I. LWT - Food Sci. Technol. 63, 1294–1300 (2015)

    Article  CAS  Google Scholar 

  6. B.L. Li, J.H. Luo, H.Q. Luo, N.B. Li, A novel conducting poly(p-aminobenzene sulphonic acid)-based electrochemical sensor for sensitive determination of Sudan I and its application for detection in food stuffs. Food Chem. 173, 594–599 (2015)

    Article  CAS  Google Scholar 

  7. Y. Cao, Z. Fang, D. Yang, Y. Gao, H. Li, Voltammetric sensor for Sudan I based on glassy carbon electrode modified by SWCNT/β-cyclodextrin conjugate. NANO 10, 1–9 (2015)

    Google Scholar 

  8. J. Li, H. Feng, J. Li, Y. Feng, Y. Zhang, J. Jiang, D. Qian, Fabrication of gold nanoparticles-decorated reduced graphene oxide as a high performance electrochemical sensing platform for the detection of toxicant Sudan I. Electrochim. Acta. 167, 226–236 (2015)

    Article  CAS  Google Scholar 

  9. M. Wang, Z. Chen, Y. Chen, C. Zhan, J. Zhao, New synthesis of self-assembly ionic liquid functionalized reduced graphene oxide-gold nanoparticles composites for electrochemical determination of Sudan I. J. Electroanal. Chem. 756, 49–55 (2015)

    Article  CAS  Google Scholar 

  10. S. Tajik, M.R. Aflatoonian, R. Shabanzade, H. Beitollahi, R. Alizadeh, Amplified electrochemical sensor employing ZnOCuO nanoplates for sensitive analysis of Sudan I. Int. J. Environ. Anal. Chem. 100, 109–120 (2019)

    Article  Google Scholar 

  11. V. Vinothkumar, A. Sangili, S.-M. Chen, T.W. Chen, M. Abinaya, V. Sethupathi, Voltammetric determination of Sudan I by using Bi2WO6 nanosheets modified glassy carbon electrode. Int. J. Electrochem. Sci. 15, 2414–2429 (2020)

  12. M. Tefera, A. Geto, M. Tessema, A. Shimelis, Simultaneous determination of caffeine and paracetamol by square wave voltammetry at poly(4-amino 3 hydroxy-naphthalene sulfonic acid)modified glassy carbon electrode. Food Chem. 210, 156–162 (2016)

    Article  CAS  Google Scholar 

  13. A. Totaganti, S.J. Malode, D.S. Nayak, N.P. Shetti, Voltammetry and analytical applications of hydrochlorothiazide at graphene oxide modified glassy carbon electrode. Mater. Today: Proc. 18, 542–549 (2019)

    CAS  Google Scholar 

  14. S.S. Yoo, S.Y. Kim, K.S. Kim, S. Hong, M.J. Oh, M.G. Nam, W.-J. Kim, J. Park, C.-H. Chung, W.-S. Choe, P.J. Yoo, Controlling inter-sheet-distance in reduced graphene oxide electrodes for highly sensitive electrochemical ımpedimetric sensing of myoglobin. Sens. Actuators B Chem. 305, 127477 (2019)

  15. D. Maity, C.R. Minita, K.R.T. Rajendra, Glucose oxidase immobilized amine terminated multiwall carbon nanotubes/reduced graphene oxide/polyaniline/gold nanoparticles modified screen-printed carbon electrode for highly sensitive amperometric glucose detection. Mater. Sci. Eng. C 105, 110075 (2019)

  16. K. Liu, Y. Yao, T. Lv, H. Li, N. Li, Z. Chen, G. Qian, T. Chen, Textile-like electrodes of seamless graphene/nanotubes for wearable and stretchable supercapacitors. J. Power Sources 446, 227355 (2020)

  17. J. Turkevich, P.C. Stevenson, J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 52, 55–75 (1951)

    Article  Google Scholar 

  18. I. Ojea-Jiménez, F.M. Romero, N.G. Bastús, V. Puntes, Supporting Information: Small gold nanoparticles synthesized with sodium citrate and heavy water Insights into the reaction mechanism. J. Phys. Chem. C 114, 1800–1804 (2010)

    Article  Google Scholar 

  19. S.K. Balasubramanian, L. Yang, L.L. Yung, C.-N. Ong, W.Y. Ong, L.E. Yu, Characterization, purification, and stability of gold nanoparticles. Biomaterials 31, 9023–9030 (2010)

    Article  CAS  Google Scholar 

  20. D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, J.M. Tour, Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876 (2009)

    Article  CAS  Google Scholar 

  21. M. Terrones, Sharpening the chemical scissors to unzip carbon nanotubes: crystalline graphene nanoribbons. ACS Nano 4, 1775–1781 (2010)

    Article  CAS  Google Scholar 

  22. A. Erkal, İ Üstündağ, S. Yavuz, Z. Üstündağ, An electrochemical application of MnO2 decorated graphene supported glassy carbon ultrasensitive electrode: Pb2+ and Cd2+ analysis of seawater samples. J. Electrochem. Soc. 162, 213–219 (2015)

    Article  Google Scholar 

  23. İ Üstündağ, A. Erkal, Z. Üstündağ, A.O. Solak, Electrochemical detection of cadmium and lead in rice on manganese dioxide reinforced carboxylated graphene oxide nanofilm. MANAS J. Eng. 6, 96–109 (2018)

    Google Scholar 

  24. D. Meiju, H. Xiaogang, Z. Zihao, W. Shouguo, Determination of Sudan I in hot chili powder by using an activated glassy carbon electrode. Food Chem. 105, 883–887 (2007)

    Article  Google Scholar 

  25. R. Güzel, Z. Üstündağ, H. Ekşi, S. Keskin, B. Taner, Z.G. Durgun, A.A. Turan, A.O. Solak, Effect of Au and Au@Ag core–shell nanoparticles on the SERS of bridging organic molecules. J. Colloid Interface Sci. 351, 35–42 (2010)

    Article  Google Scholar 

  26. Z. Üstündağ, A.O. Solak, EDTA modified glassy carbon electrode: preparation and characterization. Elektrochim. Acta 54, 6426–6432 (2009)

    Article  Google Scholar 

  27. E. Prabakaran, K. Pandian, Amperometric detection of Sudan I in red chili powder samples using Ag nanoparticles decorated graphene oxide modified glassy carbon electrode. Food Chem. 166, 198–205 (2015)

    Article  CAS  Google Scholar 

  28. T. Gan, K. Li, K. Wu, Multi-wall carbon nanotube-based electrochemical sensor for sensitive determination of Sudan I. Sens. Actuators B Chem. 132, 134–139 (2008)

    Article  CAS  Google Scholar 

  29. X. Ma, M. Chao, Z. Wang, Electrochemical determination of Sudan I in food samples at graphene modified glassy carbon electrode based on the enhancement effect of sodium dodecyl sulphonate. Food Chem. 138, 739–744 (2013)

    Article  CAS  Google Scholar 

  30. J. Zhang, M.L. Wang, C. Shentu, W.C. Wang, Y. He, Z.D. Chen, Electrochemical detection of Sudan I by using an expanded graphite paste electrode. J Electroanal Chem 685, 47–52 (2012)

    Article  CAS  Google Scholar 

  31. S. Palanisamy, T. Kokulnathan, S.M. Chen, V. Velusamy, S.K. Ramaraj, Voltammetric determination of Sudan I in food samples based on platinum nanoparticles decorated on graphene-β-cyclodextrin modified electrode. J. Electroanal. Chem. 794, 64–70 (2017)

    Article  CAS  Google Scholar 

  32. L. Wang, R. Yang, J. Li, L. Qu, P.D.B. Harrington, High-sensitive electrochemical sensor of Sudan I based on template-directed self-assembly of graphene-ZnSe quantum dots hybrid structure. Sens. Actuators B Chem. 215, 181–187 (2015)

    Article  CAS  Google Scholar 

  33. K. Karaboduk, E. Hasdemir, Voltammetric determination of Sudan I in food samples using its Cu(II) compound. Food Technol. Biotech. 56, 573–580 (2018)

    Article  CAS  Google Scholar 

  34. M. Najafi, M.A. Khalilzadeh, H. Karimi-Maleh, A new strategy for determination of bisphenol A in the presence of Sudan I using a ZnO/CNTs/ionic liquid paste electrode in food samples. Food Chem. 158, 125–131 (2014)

    Article  CAS  Google Scholar 

  35. H. Yin, Y. Zhou, X. Meng, T. Tang, S. Ai, L. Zhu, Electrochemical behaviour of Sudan I at Fe3O4 nanoparticles modified glassy carbon electrode and its determination in food samples. Food Chem. 127, 1348–1353 (2011)

    Article  CAS  Google Scholar 

  36. D. Yang, L. Zhu, X. Jiang, Electrochemical reaction mechanism and determination of Sudan I at a multi wall carbon nanotubes modified glassy carbon electrode. J. Electroanal. Chem. 640, 17–22 (2010)

    Article  CAS  Google Scholar 

  37. D. Yang, L. Zhu, X. Jiang, L. Guo, Sensitive determination of Sudan I at an ordered mesoporous carbon modified glassy carbon electrode. Sens. Actuators B Chem. 141, 124–129 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is extracted by İhsan Aşık PhD. Thesis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zafer Üstündağ or İ. Afşin Kariper.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 220 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aşık, İ., Üstündağ, Z. & Kariper, İ.A. Electroanalytical Determination of Sudan I Using Gold Nanoparticle/Graphene Nanoribbons-Modified Glassy Carbon Electrode. Electrocatalysis 13, 338–347 (2022). https://doi.org/10.1007/s12678-022-00721-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-022-00721-x

Keywords

Navigation