Skip to main content

Advertisement

Log in

On the Effects of Ferricyanide as Cathodic Mediator on the Performance of Microbial Fuel Cells

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

This study provides an insight into the long-term influence of the use of ferricyanide in the cathode chamber of a microbial fuel cell (MFC) on the power generated and the COD removal attained. Two MFCs were operated in semicontinuous mode, using winery wastewater as fuel, activated sludge as the anodic inoculum, and concentrations of 0.05 and 0.25 M of ferrocyanide added in the cathode chamber as redox mediators. The MFC used had two chambers separated by a proton exchange membrane Sterion®. The results show that permeability of the membrane to mediators is a factor of the major significance. Under no crossover, the mediator produced a positive effect on the electricity generation and COD removal. However, as the experiments progressed, a significant concentration of mediator was detected in the anode chamber and the performance of the MFC gets worse. This work reports results that help to understand the main processes happening in the MFC.

Highlights

  • Crossover of ferrocyanide and ferricyanide to the anodic chamber reduces efficiency in the production of electricity

  • The couple ferrocyanide/ferricyanide in the cathode chamber of an MFC can improve the performance in terms of COD removal and energy efficiency

  • At low mediator concentration, a maximum in the power generation and COD removal can be attained

  • At high mediator concentration, there was inhibition of biodegradation of winery wastewater

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. A. Rodrigo, P. Canizares, H. Garcia, J. J. Linares, J. Lobato, Bioresource Technol 100(4704) (2009)

  2. B.E.H. Logan, B. Rozendal, R.A. Schrorder, U. Keller, J. Freguia, S. Aelterman, P. Verstraete, W. Rabaey, K, Environ. Sci. Technol. 40, 5181 (2006)

  3. K. Rabaey, N. Boon, S. D. Siciliano, M. Verhaege, W. Verstraete, Appl. Environ. Microb 70, 5373 (2004)

    Article  CAS  Google Scholar 

  4. K. Rabaey, G. Lissens, S. D. Siciliano, W. Verstraete, Biotechn. Lett 25, 1531 (2003)

    Article  CAS  Google Scholar 

  5. S. Oh, B. Min, B. E. Logan, Environ. Sci. Technol 38, 4900 (2004)

    Article  CAS  Google Scholar 

  6. Z. W. Du, H. R. Li, T. Y. Gu, Biotechnol. Adv. 25, 464 (2007)

    Article  CAS  Google Scholar 

  7. R. D. Cusick, P. D. Kiely, B. E. Logan, Int. J. Hydrogen Energ 35, 8855 (2010)

    Article  CAS  Google Scholar 

  8. T. P. Sciarria, G. Merlino, B. Scaglia, A. D'Epifanio, B. Mecheri, S. Borin, S. Licoccia, F. Adani, J. Power Sources 274, 393 (2015)

    Article  Google Scholar 

  9. E. D. Penteado, C. M. Fernandez-Marchante, M. Zaiat, P. Cañizares, E. R. Gonzalez, M. A. Rodrigo, J. Chem.Technol. Biotecnol 91(1802) (2015)

  10. J. Lobato, P. Canizares, M. A. Rodrigo, J. J. Linares, A. Fernandez-Fragua, Chem. Eng. Sci. 61, 4773 (2006)

    Article  CAS  Google Scholar 

  11. M. A. Rodrigo, P. Canizares, H. Garcia, J. J. Linares, J. Lobato, Bioresource Technol 100, 4704 (2009)

    Article  CAS  Google Scholar 

  12. S. J. You, Q. L. Zhao, J. N. Zhang, J. Q. Jiang, S. Q. Zhao, J. Power Sources 162, 1409 (2006)

    Article  CAS  Google Scholar 

  13. A. Ter Heijne, H. V. M. Hamelers, V. De Wilde, R. A. Rozendal, C. J. N. Buisman, Environ. Sci. Technol 40, 5200 (2006)

    Article  CAS  Google Scholar 

  14. T. H. Pham, J. K. Jang, I. S. Chang, B. H. Kim, J. Microbiol. Biotechn 14, 324 (2004)

    CAS  Google Scholar 

  15. D. Dewulf, A. J. Bard, J. Macromol. Sci. Chem A26, 1205 (1989)

    Article  CAS  Google Scholar 

  16. S. J. Konopka, B. Mcduffie, Anal. Chem. 42, 1741 (1970)

    Article  CAS  Google Scholar 

  17. L. L. Wei, H. L. Han, J. Q. Shen, Int. J. Hydrogen Energ 37, 12980 (2012)

    Article  CAS  Google Scholar 

  18. C. H. Wu, C. Y. Lai, C. W. Lin, M. H. Kao, Clean Soil Air Water 41, 390 (2013)

    Article  CAS  Google Scholar 

  19. T. Pepe Sciarria, G. Merlino, B. Scaglia, A. D'Epifanio, B. Mecheri, S. Borin, S. Licoccia, F. Adani, J. Power Sources 274, 393 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) for supporting this research (process 2014/07904-5, 2011/23026-0 and 2009/15984-0) and to the Spanish government through contract CTQ2013-49748-EXP.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ernesto Rafael Gonzalez or Manuel Andrés Rodrigo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Penteado, E.D., Fernandez-Marchante, C.M., Zaiat, M. et al. On the Effects of Ferricyanide as Cathodic Mediator on the Performance of Microbial Fuel Cells. Electrocatalysis 8, 59–66 (2017). https://doi.org/10.1007/s12678-016-0334-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-016-0334-x

Keywords

Navigation