Skip to main content

Advertisement

Log in

High-Throughput Screening for Acid-Stable Oxygen Evolution Electrocatalysts in the (Mn–Co–Ta–Sb)O x Composition Space

  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Solar generation of fuel is a promising future energy technology, and strong acidic conditions are highly desirable for integrated solar hydrogen generators. In particular, water splitting near pH 0 is attractive due to the availability of high theoretical efficiency, high performance hydrogen evolution catalysts, and robust ion exchange membranes. The lack of a stable, earth-abundant oxygen evolution catalyst inhibits deployment of this technology, and development of such a material is hampered by the strong anti-correlation between electrochemical stability and catalytic activity of non-precious metal oxides. High-throughput screening of mixed metal oxides offers a promising route to the identification of new stable catalysts and requires careful design of experiments to combine the concepts of rapid experimentation and long-term stability. By combining serial and parallel measurement techniques, we have created a high-throughput platform to assess the catalytic activity of material libraries in the as-prepared state and after 2 h of operation. By screening the entire (Mn–Co–Ta–Sb)O x composition space, we observe that the compositions with highest initial activity comprised cobalt and manganese oxides, but combinations with antimony and tantalum offer improved stability. By combining the desired properties of catalytic activity and stability, the optimal composition regions are readily identified, demonstrating the success and fidelity of this novel high-throughput screening platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q.X. Mi, E.A. Santori, N.S. Lewis, Chem. Rev. 110, 6446 (2010)

    Article  CAS  Google Scholar 

  2. T.R. Cook, D.K. Dogutan, S.Y. Reece, Y. Surendranath, T.S. Teets, D.G. Nocera, Chem. Rev. 110, 6474 (2010)

    Article  CAS  Google Scholar 

  3. J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough, Y. Shao-Horn, Science 334, 1383 (2011)

    Article  CAS  Google Scholar 

  4. Bard, A. J.; Faulkner, L. R. Electrochemical methods: fundamentals and applications; (Wiley, 2000)

  5. J. Jin, K. Walczak, M.R. Singh, C. Karp, N.S. Lewis, C. Xiang, Energ Environ Sci 7, 2504–2517 (2014)

    Article  Google Scholar 

  6. E. Navarro-Flores, Z. Chong, S. Omanovic, J. Mol. Catal. A Chem. 226, 179 (2005)

    Article  CAS  Google Scholar 

  7. S. Curtarolo, G.L.W. Hart, M.B. Nardelli, N. Mingo, S. Sanvito, O. Levy, Nat. Mater. 12, 191 (2013)

    Article  CAS  Google Scholar 

  8. K.A. Persson, B. Waldwick, P. Lazic, G. Ceder, Phys Riew B 85, 235438 (2012)

    Article  Google Scholar 

  9. V. Maurice, P. Marcus, Electrochim. Acta 84, 129 (2012)

    Article  CAS  Google Scholar 

  10. J. Snyder, J. Erlebacher, J. Electrochem. Soc. 157, C125 (2010)

    Article  CAS  Google Scholar 

  11. G. Chen, S.R. Bare, T.E. Mallouk, J. Electrochem. Soc. 149, A1092 (2002)

    Article  CAS  Google Scholar 

  12. A.G. Dokoutchaev, F. Abdelrazzaq, M.E. Thompson, J. Willson, C. Chang, A. Bocarsly, Chem. Mater. 14, 3343 (2002)

    Article  CAS  Google Scholar 

  13. D. Seley, K. Ayers, B.A. Parkinson, ACS Comb. Sci. 15, 82 (2013)

    Article  CAS  Google Scholar 

  14. E. Reddington, A. Sapienza, B. Gurau, R. Viswanathan, S. Sarangapani, E.S. Smotkin, T.E. Mallouk, Science 280, 1735 (1998)

    Article  CAS  Google Scholar 

  15. Z. Zhang, J. Liu, J. Gu, L. Su, L. Cheng, Energ. Environ. Sci. 7, 2535 (2014)

    Article  CAS  Google Scholar 

  16. L. Su, W. Jia, C.-M. Li, Y. Lei, ChemSusChem 7, 361 (2014)

    Article  CAS  Google Scholar 

  17. A. Bonakdarpour, R. Löbel, S. Sheng, T.L. Monchesky, J.R. Dahn, J. Electrochem. Soc. 153, A2304 (2006)

    Article  CAS  Google Scholar 

  18. A. Bonakdarpour, K. Stevens, G.D. Vernstrom, R. Atanasoski, A.K. Schmoeckel, M.K. Debe, J.R. Dahn, Electrochim. Acta 53, 688 (2007)

    Article  CAS  Google Scholar 

  19. R. Kötz, S. Stucki, Electrochim. Acta 31, 1311 (1986)

    Article  Google Scholar 

  20. J. Gaudet, A.C. Tavares, S. Trasatti, D. Guay, Chem. Mater. 17, 1570 (2005)

    Article  CAS  Google Scholar 

  21. C.P. De Pauli, S. Trasatti, J. Electroanal. Chem. 396, 161 (1995)

    Article  Google Scholar 

  22. A. Marshall, S. Sunde, M. Tsypkin, R. Tunold, Int. J. Hydrogen Energy 32, 2320 (2007)

    Article  CAS  Google Scholar 

  23. R.S. Yeo, J. Orehotsky, W. Visscher, S. Srinivasan, J. Electrochem. Soc. 128, 1900 (1981)

    Article  CAS  Google Scholar 

  24. K. Kadakia, M.K. Datta, O.I. Velikokhatnyi, P. Jampani, S.K. Park, P. Saha, J.A. Poston, A. Manivannan, P.N. Kumta, Int. J. Hydrogen Energy 37, 3001 (2012)

    Article  CAS  Google Scholar 

  25. C.C.L. McCrory, S. Jung, J.C. Peters, T.F. Jaramillo, J. Am. Chem. Soc. 135, 16977 (2013)

    Article  CAS  Google Scholar 

  26. J.M. Gregoire, C. Xiang, S. Mitrovic, X. Liu, M. Marcin, E.W. Cornell, J. Fan, J. Jin, J. Electrochem. Soc. 160, F337 (2013)

    Article  CAS  Google Scholar 

  27. J.M. Gregoire, C.X. Xiang, X.N. Liu, M. Marcin, J. Jin, Rev. Sci. Instrum. 84, 024102 (2013)

    Article  Google Scholar 

  28. J. Fan, S.W. Boettcher, G.D. Stucky, Chem. Mater. 18, 6391 (2006)

    Article  CAS  Google Scholar 

  29. X.N. Liu, Y. Shen, R.T. Yang, S.H. Zou, X.L. Ji, L. Shi, Y.C. Zhang, D.Y. Liu, L.P. Xiao, X.M. Zheng, S. Li, J. Fan, G.D. Stucky, Nano Lett. 12, 5733 (2012)

    Article  CAS  Google Scholar 

  30. J.M. Gregoire, M. Kostylev, M.E. Tague, P.F. Mutolo, R.B. van Dover, F.J. DiSalvo, H.D. Abruña, J. Electrochem. Soc. 156, B160 (2009)

    Article  CAS  Google Scholar 

  31. X. Li, Q. Chen, I. McCue, J. Snyder, P. Crozier, J. Erlebacher, K. Sieradzki, Nano Lett. 14, 2569 (2014)

    Article  CAS  Google Scholar 

  32. F.R. Nikkuni, E.A. Ticianelli, L. Dubau, M. Chatenet, Electrocatalysis 4, 104 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This manuscript is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy (Award No. DE-SC0004993). The authors thank Dr. Chengxiang Xiang for assistance with establishing the electrochemical treatment system and Dr. Manuel Soriaga for the illuminating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Gregoire.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shinde, A., Jones, R.J.R., Guevarra, D. et al. High-Throughput Screening for Acid-Stable Oxygen Evolution Electrocatalysts in the (Mn–Co–Ta–Sb)O x Composition Space. Electrocatalysis 6, 229–236 (2015). https://doi.org/10.1007/s12678-014-0237-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-014-0237-7

Keywords

Navigation