Skip to main content
Log in

Hierarchically Structured Pt–Alloy Ethanol Oxidation Electrocatalysts

  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Bimodal-sized Pt–Sn and Ru–alloy catalysts for the electro-oxidation of ethanol were synthesized using a novel templating approach and evaluated for ethanol oxidation in alkaline media. This templating approach leads to trimodal-sized catalyst particles embedded in and on bimodal-pore carbon support. Electrochemical evaluation suggested that Pt–Sn phases enhance dehydrogenation and/or C–C bond splitting, while Pt–Ru phases facilitates complete oxidation of the intermediate reaction product CO. The criteria for best-performing catalyst are derived from studies and found to be 2–5 nm Pt(Sn) and the addition of Ru is conjectured to be beneficial. Mass transport effects observed demonstrates that it is possible to effect catalytic performance using the hierarchically structured templating approach used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. E. Antolini, E.R. Gonzalez, Effect of synthesis method and structural characteristics of Pt-Sn fuel cell catalysts on the electro-oxidation of CH3OH and CH3CH2OH in acid medium. Catalysis Today 160(1), 28–38 (2011)

    Article  CAS  Google Scholar 

  2. C.T. Hable, M.S. Wrighton, Electrocatalytic oxidation of methanol and ethanol—a comparison of platinum–tin and platinum–ruthenium catalyst particles in a conducting polyaniline matrix. Langmuir 9(11), 3284–3290 (1993)

    Article  CAS  Google Scholar 

  3. V. Radmilovic, H.A. Gasteiger, P.N. Ross, Structure and chemical-composition of a supported Pt–Ru electrocatalyst for methanol oxidation. J Catal 154(1), 98–106 (1995)

    Article  CAS  Google Scholar 

  4. C. Panja, N. Saliba, B.E. Koel, Adsorption of methanol, ethanol and water on well-characterized Pt–Sn surface alloys. Surf Sci 395(2/3), 248–259 (1998)

    Article  CAS  Google Scholar 

  5. A. Kowal et al., Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2. Nat Mater 8(4), 325–330 (2009)

    Article  CAS  Google Scholar 

  6. S. Pylypenko et al., Non-platinum oxygen reduction electrocatalysts based on pyrolyzed transition metal macrocycles. Electrochim Acta 53(27), 7875–7883 (2008)

    Article  CAS  Google Scholar 

  7. E.E. Switzer et al., Templated Pt–Sn electrocatalysts for ethanol, methanol and CO oxidation in alkaline media. Electrochim Acta 54(3), 989–995 (2009)

    Article  CAS  Google Scholar 

  8. S. Pylypenko et al., Templated platinum/carbon oxygen reduction fuel cell electrocatalysts. J Phys Chem C 114(9), 4200–4207 (2010)

    Article  CAS  Google Scholar 

  9. E. Antolini, F. Colmati, E.R. Gonzalez, Effect of Ru addition on the structural characteristics and the electrochemical activity for ethanol oxidation of carbon supported Pt–Sn alloy catalysts. Electrochem Commun 9(3), 398–404 (2007)

    Article  CAS  Google Scholar 

  10. J.H. Kim et al., Influence of Sn content on PtSn/C catalysts for electrooxidation of C1–C3 alcohols: synthesis, characterization, and electrocatalytic activity. Appl Catal, B 82(1–2), 89–102 (2008)

    CAS  Google Scholar 

  11. S. Garcia-Rodriguez et al., Controlled synthesis of Pt–Sn/C fuel cell catalysts with exclusive Sn–Pt interaction. Appl Cata B 91(1–2), 83–91 (2009)

    Article  CAS  Google Scholar 

  12. E. Switzer, A. Datye, P. Atanassov, Nanostructured anode Pt–Ru electrocatalysts for direct methanol fuel cells. Top Catal 46(3), 334–338 (2007)

    Article  CAS  Google Scholar 

  13. F. Vigier et al., On the mechanism of ethanol electro-oxidation on Pt and PtSn catalysts: electrochemical and in situ IR reflectance spectroscopy studies. J Electroanal Chem 563(1), 81–89 (2004)

    Article  CAS  Google Scholar 

  14. E.V. Spinace, M. Linardi, A.O. Neto, Co-catalytic effect of nickel in the electro-oxidation of ethanol on binary Pt–Sn electrocatalysts. Electrochem Commun 7(4), 365–369 (2005)

    Article  CAS  Google Scholar 

  15. S. Tanaka et al., Preparation and evaluation of a multi-component catalyst by using a co-sputtering system for anodic oxidation of ethanol. J Power Sources 152(1), 34–39 (2005)

    Article  CAS  Google Scholar 

  16. P. Bommersbach, M. Mohamedi, D. Guay, Electro-oxidation of ethanol at sputter-deposited platinum–tin catalysts. J Electrochem Soc 154(8), B876–B882 (2007)

    Article  CAS  Google Scholar 

  17. C. Lamy et al., Recent progress in the direct ethanol fuel cell: development of new platinum–tin electrocatalysts. Electrochim Acta 49(22–23), 3901–3908 (2004)

    Article  CAS  Google Scholar 

  18. F. Colmati, E. Antolini, E.R. Gonzalez, Ethanol oxidation on a carbon-supported Pt75Sn25 electrocatalyst prepared by reduction with formic acid: effect of thermal treatment. Appl Catal Environ 73(1–2), 106–115 (2007)

    Article  CAS  Google Scholar 

  19. E. Antolini, Catalysts for direct ethanol fuel cells. J Power Sources 170(1), 1–12 (2007)

    Article  CAS  Google Scholar 

  20. G.A. Camara, R.B. de Lima, T. Iwasita, Catalysis of ethanol electro oxidation by PtRu: the influence of catalyst composition. Electrochem Commun 6(8), 812–815 (2004)

    Article  CAS  Google Scholar 

  21. N. Fujiwara, K.A. Friedrich, U. Stimming, Ethanol oxidation on PtRu electrodes studied by differential electrochemical mass spectrometry. J Electroanal Chem 472(2), 120–125 (1999)

    Article  CAS  Google Scholar 

  22. W.J. Zhou et al., Pt based anode catalysts for direct ethanol fuel cells. Appl Catal Environ 46(2), 273–285 (2003)

    Article  CAS  Google Scholar 

  23. M. Lopezatalaya et al., Electrochemical oxidation of ethanol on Pt(Hkl) basal surfaces in Naoh and Na2co3 media. J Power Sources 52(1), 109–117 (1994)

    Article  CAS  Google Scholar 

  24. H. Wang, Z. Jusys, R.J. Behm, Ethanol electrooxidation on a carbon-supported Pt catalyst: reaction kinetics and product yields. J Phys Chem B 108(50), 19413–19424 (2004)

    Article  CAS  Google Scholar 

  25. A. Verma, S. Basu, Direct alkaline fuel cell for multiple liquid fuels: anode electrode studies. J Power Sources 174(1), 180–185 (2007)

    Article  CAS  Google Scholar 

  26. M.E.P. Markiewicz, S.H. Bergens, Electro-oxidation of 2-propanol and acetone over platinum, platinum–ruthenium, and ruthenium nanoparticles in alkaline electrolytes. J Power Sources 185(1), 222–225 (2008)

    Article  CAS  Google Scholar 

  27. C. Xu, P.K. Shen, Electrochamical oxidation of ethanol on Pt-CeO2/C catalysts. J Power Sources 142(1–2), 27–29 (2005)

    Article  CAS  Google Scholar 

  28. Y. Bai et al., Electrochemical oxidation of ethanol on Pt-ZrO2/C catalyst. Electrochem Commun 7(11), 1087–1090 (2005)

    Article  CAS  Google Scholar 

  29. C. Xu et al., Enhanced activity for ethanol electrooxidation on Pt-MgO/C catalysts. Electrochem Commun 7(12), 1305–1308 (2005)

    Article  CAS  Google Scholar 

  30. Massalski TB (1990) Binary alloy phase diagrams. Second ed. T.B. Massalski (ed). Vol. 3. Materials Park, Ohio: Materials Information Soc.

  31. P. Durussel, R. Massara, P. Feschotte, The binary system Pt–Sn. J Alloys Compd 215(1–2), 175–179 (1994)

    Article  CAS  Google Scholar 

  32. T. Hahn et al., International tables for crystallography. 3rd, rev. ed (Kluwer, Dordrecht, 1992)

    Google Scholar 

  33. Larson AC, VonDreele RB (2004) General structure analysis system (GSAS). Los Alamos National Laboratory Report LAUR 86–748

  34. P. Thompson, D.E. Cox, J.B. Hastings, Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al2o3. J Appl Crystallogr 20, 79–83 (1987)

    Article  CAS  Google Scholar 

  35. J.C. Slater, Atomic radii in crystals. J Chem Phys 41(10), 3199 (1964)

    Article  CAS  Google Scholar 

  36. L. Vegard, The constitution of the mixed crystals and the filling of space of the atoms. Zeitschrift Fur Physik 5, 17–26 (1921)

    Article  CAS  Google Scholar 

  37. Y. Le Page, C. Bock, J.R. Rodgers, Small step graphs of cell data versus composition for ccp solid-solution binary alloys: application to the (Pt, Ir), (Pt, Re) and (Pt, Ru) systems. J Alloys Compd 422(1–2), 164–172 (2006)

    Article  Google Scholar 

  38. E.J. Mittemeijer, X-ray diffraction analysis of the microstructure of precipitating Al-based alloys, in Analytical characterization of aluminum, steel, and superalloys, ed. by D.S. MacKenzie, G.E. Totten (CRC Press, Boca Raton, FL, 2006), pp. 344–346

    Google Scholar 

  39. M. Li et al., Ethanol oxidation on the ternary Pt–Rh–SnO2/C electrocatalysts with varied Pt:Rh:Sn ratios. Electrochim Acta 55(14), 4331–4338 (2010)

    Article  CAS  Google Scholar 

  40. R. Wyckoff, Crystal structures, 2nd edn. (Interscience, New York, NY, 1963)

    Google Scholar 

  41. J.S. Charlton, M. Cordeyha, I.R. Harris, A study of Sm-119 Mossbauer isomer shifts in some platinum–tin and gold–tin alloys. Journal of the Less-Common Metals 20(2), 105 (1970)

    Article  CAS  Google Scholar 

  42. K.L. Shelton, P.A. Merewether, B.J. Skinner, Phases and phase-relations in the system Pd-Pt-Sn. Can Mineral 19(4), 599–605 (1981)

    CAS  Google Scholar 

  43. Baur WH, Khan AA (1971) Rutile-type compounds .4. Sio2, Geo2 and a comparison with other rutile-type structures. Acta Crystallographica Section B-Structural Crystallography and Crystal Chemistry, B 27(NOV15): 2133.

Download references

Acknowledgments

We gratefully acknowledge support from DOE EPSCoR NM Implementation Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Plamen Atanassov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pylypenko, S., Peterson, E.J., Halevi, B. et al. Hierarchically Structured Pt–Alloy Ethanol Oxidation Electrocatalysts. Electrocatalysis 3, 334–345 (2012). https://doi.org/10.1007/s12678-012-0085-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-012-0085-2

Keywords

Navigation