Skip to main content
Log in

Platinum Monolayer Electrocatalysts for O2 Reduction: Pt Monolayer on Carbon-Supported PdIr Nanoparticles

  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

The kinetics of oxygen reduction was investigated in acid solutions on Pt monolayers deposited on modified carbon-supported PdIr nanoparticles using the rotating disk-electrode technique. Iridium is introduced into the Pd substrate in order to fine-tune the Pt–Pd interactions and to improve Pd stability under operating conditions of the fuel cell. The kinetics of the oxygen reduction reaction shows enhancement with the Pt monolayer on the PdIr nanoparticle surfaces in comparison with the reaction on Pt/C and Pt monolayer on Pd/C nanoparticles. The electrochemical measurements suggest that reduced oxidation of Pt monolayer on PdIr/C compared to Pt/C and Pt monolayer on Pd/C is the cause of enhanced activity. Besides a ligand effect induced to the Pt surface by the presence of PdIr in the second sublayer of the nanoparticle, as suggested by our density functional theory analysis, Ir also leads to a Pd skin contraction, so the Pt monolayer on PdIr/C is compressed more than on Pd/C. Both effects lead to further weakening of the Pt–OH interaction, thus increasing the ORR activity. The Pt-specific activity for PtMLPdIr/C is three times and 25% higher than that of Pt/C and PtMLPd/C respectively; the Pt-mass activity of PtMLPdIr/C is more than 20 times and 25% higher than that of Pt/C and PtMLPd/C, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Vielstich W, Lamm A, Gasteiger H (2004) Hand book of fuel cells. John Wiley & Sons Inc, pp 1–57

  2. R. Bashyam, P. Zelenay, Nature 443, 63 (2006)

    Article  CAS  Google Scholar 

  3. H. Gasteiger, J. Panels, S. Yan, J. Power Sources. 127(1–2), 162 (2004)

    Article  CAS  Google Scholar 

  4. J. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. Kitchin, T. Bligaard, J. Phys. Chem. B. 108(46), 17886 (2004)

    Article  Google Scholar 

  5. J. Wang, N. Markovic, R. Adzic, J. Phys. Chem. B. 108, 4127 (2004)

    Article  CAS  Google Scholar 

  6. R. Adzic, Frontiers in electrochemistry (VCH Publishers, New York, 1998), p. 197

    Google Scholar 

  7. S. Mukerjee, S. Srinivasan, M. Soriaga, J. McBreen, J. Phys. Chem. 99, 4577 (1995)

    Article  CAS  Google Scholar 

  8. S. Mukerjee, S. Srinivasan, J. Electroanal. Chem. 357, 201 (1993)

    Article  CAS  Google Scholar 

  9. M. Min, J. Cho, H. Kim, Electrochim. Acta. 45, 4211 (2000)

    Article  CAS  Google Scholar 

  10. S. Koh, M. Toney, P. Strasser, Electrochim. Acta. 52, 2765 (2007)

    Article  CAS  Google Scholar 

  11. T. Toda, H. Igarashi, M. Watanabe, J. Electroanal. Chem. 460, 258 (1999)

    Article  CAS  Google Scholar 

  12. U. Paulus, A. Wokaun, G. Scherer, T. Schmidt, V. Stamenkovic, N. Markovic, P. Ross, Electrochim. Acta. 47, 3787 (2002)

    Article  CAS  Google Scholar 

  13. H. Gasteiger, S. Kocha, B. Sompalli, F. Wagner, Appl. Catal. B. – Environ. 56(1–2), 9 (2005)

    Article  CAS  Google Scholar 

  14. J. Zhang, Y. Mo, M. Vukmirovic, R. Kile, K. Sasaki, R. Adzic, J. Phys. Chem. B. 108, 10955 (2004)

    Article  CAS  Google Scholar 

  15. J. Zhang, F. Lima, M. Shao, K. Sasaki, J. Wang, J. Hanson, R. Adzic, J. Phys. Chem. Lett. B. 109, 22701 (2005)

    CAS  Google Scholar 

  16. J. Zhang, M. Vukmirovic, K. Sasaki, F. Uribe, R. Adzic, J. Serb. Chem. Soc. 70(3), 513 (2005)

    Article  CAS  Google Scholar 

  17. R. Adzic, J. Zhang, K. Sasaki, M. Vukmirovic, M. Shao, J. Wang, A. Nilekar, M. Mavrikakis, J. Valerio, F. Uribe, Top. Catal. 46, 249 (2007)

    Article  CAS  Google Scholar 

  18. J. Zhang, M. Vukmirovic, Y. Xu, M. Mavrikakis, R. Adzic, Angew. Chem. Int. Ed. 44, 2132 (2005)

    Article  CAS  Google Scholar 

  19. M. Vukmirovic, J. Zhang, K. Sasaki, A. Nilekar, F. Uribe, M. Mavrikakis, R. Adzic, Electrochim. Acta. 52, 2257 (2007)

    Article  CAS  Google Scholar 

  20. M. Prasanna, R. Srecastava, P. Strasser, J. Phys. Chem. C. 112, 2770 (2008)

    Article  Google Scholar 

  21. N. Aas, M. Bowker, Surface Science 310, 113 (1994)

    Article  CAS  Google Scholar 

  22. S. Brankovic, J. Wang, R. Adzic, Surf. Sci. 474, L173 (2001)

    Article  CAS  Google Scholar 

  23. J. Greeley, J. Nørskov, Annu. Rev. Phys. Chem. 53, 319 (2002)

    Article  CAS  Google Scholar 

  24. B. Hammer, L. Hansen, J. Nørskov, Phys. Rev. B 59, 7413 (1999)

    Article  Google Scholar 

  25. N. Ashcroft, N. Mermin, Solid State Physics (Saunders College, Orlando, FL, 1976), p. 1

    Google Scholar 

  26. A. Nilekar, M. Mavrikakis, Surf. Sci. 602, L89 (2008)

    Article  CAS  Google Scholar 

  27. J. McBreen, S. Mukerjee, J. Electrochem. Soc. 142, 3399 (1995)

    Article  CAS  Google Scholar 

  28. L. Vitos, A. Ruban, H. Skriver, J. Kollar, Surface Science. 411, 186 (1998)

    Article  CAS  Google Scholar 

  29. A. Nilekar, A. Ruban, M. Mavrikakis, Surface Science. 603, 91 (2009)

    Article  CAS  Google Scholar 

  30. V. Stamenkovic, T. Schmidt, P. Ross, N. Markovic, J. Eletroanal. Chem. 554, 191 (2003)

    Article  Google Scholar 

  31. V. Stamenkovic, B. Mun, J. Mayrhofer, P. Ross, N. Markovic, J Am Chem Soc 128, 8813 (2006)

    Article  CAS  Google Scholar 

  32. V. Stamenkovic, T. Schmidt, P. Ross, N. Markovic, J. Phys. Chem. B. 106, 11970 (2002)

    Article  CAS  Google Scholar 

  33. Y. Ma, P. Balbuena, Surface Science. 602, 107 (2008)

    Article  CAS  Google Scholar 

  34. M. Shao, T. Huang, P. Liu, J. Zhang, K. Sasaki, M. Vukmirovic, R. Adzic, R. Langmuir. 22, 10409 (2006)

    Article  CAS  Google Scholar 

  35. W. Zhou, X. Yang, M. Vukmirovic, B. Keol, J. Jiao, G. Peng, M. Mavirkakis, R. Adzic, J Am Chem Soc 131, 12755 (2009)

    Article  CAS  Google Scholar 

  36. L. Kibler, A. El-Aziz, R. Hoyer, D. Kolb, Angew. Chem. Int. Ed. 44, 2080 (2005)

    Article  CAS  Google Scholar 

  37. M. Shao, P. Liu, J. Zhang, R. Adzic, J. Phys. Chem. B. 111, 6772 (2007)

    Article  CAS  Google Scholar 

  38. N. Anastasijevic, V. Vesocic, R. Adzic, J. Electroanal. Chem. 229, 317 (1987)

    Article  CAS  Google Scholar 

  39. D. Lide, R. Ed, CRC handbook of chemistry and physics, 75th edn. (CRC Press, Florida, 1995)

    Google Scholar 

  40. B. Hammer, J. Nørskov, Adv. In Catalysis. 45, 71 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Work at BNL was supported by US Department of Energy, Divisions of Chemical and Material Sciences, under the contract no. DE-AC02-98CH10886. Work at CNSE was supported by New York State Foundation for Science, Technology and Academic Research. Work at UW-Madison was supported by DOE-BES, Chemical Sciences. CPU time was utilized at facilities located at ANL, PNNL, ORNL, and NERSC, all supported by the DOE. The authors would like to thank Dr. Juntao Li and Dr. Sei Hirigashi for their assistance obtaining TEM/EDS and TGA data respectively at CNSE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radoslav R. Adzic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knupp, S.L., Vukmirovic, M.B., Haldar, P. et al. Platinum Monolayer Electrocatalysts for O2 Reduction: Pt Monolayer on Carbon-Supported PdIr Nanoparticles. Electrocatal 1, 213–223 (2010). https://doi.org/10.1007/s12678-010-0028-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-010-0028-8

Keywords

Navigation