Skip to main content
Log in

The Oxidation of Adsorbed CO on Pt(100) Electrodes in the Pre-peak Region

  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

The oxidation of CO adsorbed on Pt(100) electrodes in the pre-peak region (between 0.30 and 0.60 V) was studied using cyclic voltammetry, current–time transients and Fourier transform infrared spectroscopy. According to our results, the pre-peak corresponds to the oxidation of a small fraction (<15%) of the CO adlayer, adsorbed on the terraces and adjacent to the step sites, the rate of CO oxidation being limited, within this potential region and at these high CO coverages, by the diffusion of CO to the reactive sites. The picture emerging from the results reported is as follows: the reaction is initiated by a one-dimensional nucleation-and-growth oxidation of COads along the steps, immediately followed by surface diffusion-controlled oxidation of COads diffusing from the terraces to the steps and by a two-dimensional nucleation-and-growth process. The analysis of the Tafel slopes, as obtained from cyclic voltammograms at different scan rates and from plots of the logarithm of the current at the maximum, the time at the current maximum and the current at the minimum vs. the potential, suggests that the two-dimensional nucleation-and-growth process occurs more slowly than the other two processes. Only the process responsible for the two-dimensional nucleation and growth has not been clearly identified, although two possibilities are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gilman S (1964) J Phys Chem 68:70

    Article  CAS  Google Scholar 

  2. Lebedeva NP, Koper MTM, Feliu JM, van Santen RA (2000) Electrochem Commun 2:487

    Article  CAS  Google Scholar 

  3. Lebedeva NP, Koper MTM, Herrero E, Feliu JM, van Santen RA (2000) J Electroanal Chem 487:37

    Article  CAS  Google Scholar 

  4. Lebedeva NP, Rodes A, Feliu JM, Koper MTM, van Santen RA (2002) J Phys Chem B 106:9863

    Article  CAS  Google Scholar 

  5. Samjeské G, Komatsu K-I, Osawa M (2009) J Phys Chem C 113:10222

    Article  Google Scholar 

  6. Markovic NM, Grgur BN, Lucas CA, Ross PN (1999) J Phys Chem B 103:487

    Article  CAS  Google Scholar 

  7. Grambow L, Bruckenstein S (1977) Electrochim Acta 22:377

    Article  CAS  Google Scholar 

  8. Sobkowski J, Czerwinski A (1985) J Phys Chem 89:365

    Article  CAS  Google Scholar 

  9. Kunimatsu K, Seki H, Golden WG, Gordon JG, Philpott MR (1986) Langmuir 2:464

    Article  CAS  Google Scholar 

  10. Kita H, Narumi H, Ye S, Naohara H (1993) J Appl Electrochem 23:589

    Article  CAS  Google Scholar 

  11. Wieckowski A, Rubel M, Gutiérrez C (1995) J Electroanal Chem 382:97

    Article  Google Scholar 

  12. López-Cudero A, Cuesta A, Gutiérrez C (2005) J Electroanal Chem 579:1

    Article  Google Scholar 

  13. López-Cudero A, Cuesta Á, Gutiérrez C (2006) J Electroanal Chem 586:204

    Article  Google Scholar 

  14. Cuesta A, Couto A, Rincón A, Pérez MC, López-Cudero A, Gutiérrez C (2006) J Electroanal Chem 586:184

    Article  CAS  Google Scholar 

  15. Inkaew P, Zhou W, Korzeniewski C (2008) J Electroanal Chem 614:93

    Article  CAS  Google Scholar 

  16. Clavilier J, Faure R, Guinet G, Durand R (1980) J Electroanal Chem 107:205

    Article  CAS  Google Scholar 

  17. Bard AJ, Faulkner LR (2001) Electrochemical methods, fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  18. Garcia G, Koper MTM (2008) Phys Chem Chem Phys 10:3802

    Article  CAS  Google Scholar 

  19. Lebedeva NP, Koper MTM, Feliu JM, van Santen RA (2001) J Electroanal Chem 524-525:242

    Article  Google Scholar 

  20. Bergelin M, Herrero E, Feliu JM, Wasberg M (1999) J Electroanal Chem 467:74

    Article  CAS  Google Scholar 

  21. Santos E, Leiva EPM, Vielstich W (1991) Electrochim Acta 36:555

    Article  CAS  Google Scholar 

  22. Spendelow JS, Goodpaster JD, Kenis PJA, Wieckowski A (2006) J Phys Chem B 110:9545

    Article  CAS  Google Scholar 

  23. Housmans THM, Hermse CGM, Koper MTM (2007) J Electroanal Chem 607:69

    Article  CAS  Google Scholar 

  24. Garcia G, Koper MTM (2009) Phys Chem Chem Phys 11:11437

    Article  CAS  Google Scholar 

  25. Cuesta A (2004) Surf Sci 572:11

    Article  CAS  Google Scholar 

  26. Chang SC, Weaver MJ (2002) J Phys Chem 94:5095

    Article  Google Scholar 

  27. Chang SC, Weaver MJ (1990) J Phys Chem 94:5095

    Article  CAS  Google Scholar 

  28. Cuesta A, Pérez MdC, Rincón A, Gutiérrez C (2006) Chem Phys Chem 7:2346

    CAS  Google Scholar 

  29. Hoffmann FM (1983) Surf Sci Rep 3:107

    Article  CAS  Google Scholar 

  30. Kibler LA, Cuesta A, Kleinert M, Kolb DM (2000) J Electroanal Chem 484:73

    Article  CAS  Google Scholar 

  31. Akemann W, Friedrich KA, Stimming U (2000) J Chem Phys 113:6864

    Article  CAS  Google Scholar 

  32. Bernasek SL, Lenz K, Poelsema B, Comsa G (1987) Surf Sci 183:L319

    Article  CAS  Google Scholar 

  33. Caram JA, Gutiérrez C (1991) J Electroanal Chem 305:259

    Article  CAS  Google Scholar 

  34. Couto A, Perez MC, Rincon A, Gutierrez C (1996) J Phys Chem 100:19538

    Article  CAS  Google Scholar 

  35. Kita H, Naohara H, Nakato T, Taguchi S, Aramata A (1995) J Electroanal Chem 386:197

    Article  Google Scholar 

  36. Kita H, Shimazu K, Kunimatsu K (1988) J Electroanal Chem 241:163

    Article  CAS  Google Scholar 

  37. Strmcnik DS, Tripkovic DV, van der Vliet D, Chang K-C, Komanicky V, You H, Karapetrov G, Greeley JP, Stamenkovic VR, Markovic NM (2008) J Am Chem Soc 130:15332

    Article  CAS  Google Scholar 

  38. Lebedeva NP, Koper MTM, Feliu JM, van Santen RA (2002) J Phys Chem B 106:12938

    Article  CAS  Google Scholar 

  39. Kucernak AR, Offer GJ (2008) Phys Chem Chem Phys 10:3699

    Article  CAS  Google Scholar 

  40. Housmans THM, Feliu JM, Koper MTM (2004) J Electroanal Chem 572:79

    Article  CAS  Google Scholar 

  41. Housmans THM, Koper MTM (2005) J Electroanal Chem 575:39

    Article  CAS  Google Scholar 

  42. Housmans THM, Koper MTM (2005) Electrochem Commun 7:581

    Article  CAS  Google Scholar 

  43. García G, Koper MTM (2009) J Am Chem Soc 131:5384

    Article  Google Scholar 

  44. Clavilier J (1980) J Electroanal Chem 107:211

    Article  CAS  Google Scholar 

  45. Clavilier J, Feliu JM, Fernandez-Vega A, Aldaz A (1989) J Electroanal Chem 269:175

    Article  CAS  Google Scholar 

  46. Clavilier J, El Achi K, Rodes A (1990) Chem Phys 141:1

    Article  CAS  Google Scholar 

  47. Rodes A, El Achi K, Zamakhchari MA, Clavilier J (1990) J Electroanal Chem 284:245

    Article  CAS  Google Scholar 

  48. Gómez R, Clavilier J (1993) J Electroanal Chem 354:189

    Article  Google Scholar 

Download references

Acknowledgement

This work was carried out with the help of the Spanish DGI, Ministerio de Educación y Ciencia, under Project CTQ2006-02109. The author is most grateful to Prof. Claudio Gutiérrez for a critical reading of the manuscript. I also wish to thank Prof. Marc T. M. Koper for allowing access to [24] before submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angel Cuesta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuesta, A. The Oxidation of Adsorbed CO on Pt(100) Electrodes in the Pre-peak Region. Electrocatal 1, 7–18 (2010). https://doi.org/10.1007/s12678-010-0003-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-010-0003-4

Keywords

Navigation