Skip to main content

Advertisement

Log in

Preparation and Evaluation of Gefitinib Containing Nanoliposomal Formulation for Lung Cancer Therapy

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The present study was aimed to develop and optimize nanoliposomes of gefitinib for effective tumor targeting. Central composite design was used to study the effect of formulation variables: sonication time, Tween 80/soya lecithin ratio, and cholesterol/soya lecithin ratio on particle size and entrapment efficiency. Gefitinib-loaded nanoliposomes were prepared using modified emulsification and ultrasonic method. The nanoliposomes of optimized batch (GF16) were found ellipsoidal or quasi-spherical in shape, with an average size of 99.88 nm and highest entrapment efficiency (88.91 ± 0.6758%). In comparison to the marketed formulation, the optimized batch released gefitinib in a sustained manner (80.16 ± 0.4849%) in 24 h following the Korsemeyer-Peppas’ model, in a mechanism combining Fickian diffusion and liposome relaxation. Furthermore, the cytotoxicity assay revealed gefitinib-loaded nanoliposomes had reduced cytotoxicity as compared to free drug in A549 and H1299 cells with an IC50 value 9.32 ± 1.25 and 8.54 ± 1.08 µM, respectively. The significant cytotoxic response of the developed nanoliposomes may be attributed due to its low particle size, high entrapment efficiency, and prolonged drug release profile. Nanoliposomes had favorable physical stability when stored at a temperature of 4 °C. Overall, the developed nanoliposomes may be considered as a promising anticancer formulation, which needs further clinical investigations and may provide a new direction to the cancer clinics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

NSCLC:

Non-small cell lung cancer

EGFR:

Epidermal growth factor receptor

PI3K:

Phosphoinositide 3-kinase

mTOR:

Mammalian target of rapamycin

MAPK:

Mitogen-activated protein kinase

TKIs:

Tyrosine kinase inhibitors

Mg-ATP:

Magnesium-adenosine triphosphate

EGFR-TK:

Epidermal growth factor receptor tyrosine kinase

CCD:

Central composite design

ICH:

International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use

HPLC:

High performance liquid chromatography

PDI:

Polydispersity index

DSC:

Differential scanning calorimeter

FT-IR:

Fourier transform infrared

KBr:

Potassium bromide

TEM:

Transmission electron microscope

USP:

United States Pharmacopeia

DMEM:

Dulbecco’s Modified Eagle’s Medium

FBS:

Fetal bovine serum

IC:

Inhibitory concentration

ANOVA:

Analysis of variance

References

  1. Herbst, R. S., Morgensztern, D., & Boshoff, C. J. (2018). The biology and management of non-small cell lung cancer. Nature, 553(7689), 446–454. https://doi.org/10.1038/nature25183

    Article  Google Scholar 

  2. Mathur, P., Sathishkumar, K., Chaturvedi, M., Das, P., Sudarshan, K. L., Santhappan, S., Nallasamy, V., John, A., Narasimhan, S., Roselind, F. S., ICMR-NCDIR-NCRP Investigator Group. (2020). Cancer statistics, 2020: Report from National Cancer Registry Programme. India. JCO Global Oncology, 6, 1063–1075. https://doi.org/10.1200/GO.20.00122 JCO Global.

    Article  Google Scholar 

  3. Yuan, M., Huang, L. L., Chen, J. H., Wu, J., & Xu, Q. (2019). The emerging treatment landscape of targeted therapy in non-small-cell lung cancer. Signal Transduction and Targeted Therapy, 4(1), 1–14. https://doi.org/10.1038/s41392-019-0099-9

    Article  Google Scholar 

  4. Ladanyi, M., & Pao, W. J. (2008). Lung adenocarcinoma: Guiding EGFR-targeted therapy and beyond. Modern Pathology, 21(2), S16–S22. https://doi.org/10.1038/modpathol.3801018

    Article  Google Scholar 

  5. Bethune, G., Bethune, D., Ridgway, N., & Xu, Z. (2010). Epidermal growth factor receptor (EGFR) in lung cancer: An overview and update. Journal of Thoracic Disease, 2(1), 48–51.

    Google Scholar 

  6. Box, C., Mendiola, M., Gowan, S., Box, G. M., Valenti, M., Brandon, A. D., Al-Lazikani, B., Rogers, S. J., Wilkins, A., Harrington, K. J., & Eccles, S. A. (2013). A novel serum protein signature associated with resistance to epidermal growth factor receptor tyrosine kinase inhibitors in head and neck squamous cell carcinoma. European Journal of Cancer, 49(11), 2512–2521. https://doi.org/10.1016/j.ejca.2013.03.011

    Article  Google Scholar 

  7. Goffin, J. R., & Zbuk, K. J. (2013). Epidermal growth factor receptor: Pathway, therapies, and pipeline. Clinical Therapeutics, 35(9), 1282–1303. https://doi.org/10.1016/j.clinthera.2013.08.007

    Article  Google Scholar 

  8. Gazdar, A. F. J. C., & Reviews, M. (2010). Epidermal growth factor receptor inhibition in lung cancer: The evolving role of individualized therapy. Cancer and Metastasis Reviews, 29(1), 37–48. https://doi.org/10.1007/s10555-010-9201-z

    Article  Google Scholar 

  9. Seshacharyulu, P., Ponnusamy, M. P., Haridas, D., Jain, M., Ganti, A. K., & Batra, S. K. (2012). Targeting the EGFR signaling pathway in cancer therapy. Expert Opinion on Therapeutic Targets, 16(1), 15–31. https://doi.org/10.1517/14728222.2011.648617

    Article  Google Scholar 

  10. Nurwidya, F., Takahashi, F., & Takahashi, K. J. (2016). Gefitinib in the treatment of nonsmall cell lung cancer with activating epidermal growth factor receptor mutation. Journal of Natural Science, Biology and Medicine, 7(2), 119–123. https://doi.org/10.4103/0976-9668.184695

    Article  Google Scholar 

  11. Masuda, H., Zhang, D., Bartholomeusz, C., Doihara, H., Hortobagyi, G. N., & Ueno, N. T. (2012). Role of epidermal growth factor receptor in breast cancer. Breast Cancer Research and Treatment, 136(2), 331–345. https://doi.org/10.1007/s10549-012-2289-9

    Article  Google Scholar 

  12. Shi, C., Guo, D., Xiao, K., Wang, X., Wang, L., & Luo, J. (2015). A drug-specific nanocarrier design for efficient anticancer therapy. Nature Communications, 6(1), 1–14. https://doi.org/10.1038/ncomms8449

    Article  Google Scholar 

  13. Rahman, A. M., Korashy, H. M., Kassem, M. G. (2014). Gefitinib. In: Profiles of drug substances, excipients and related methodology. 39, 239–264. https://doi.org/10.1016/B978-0-12-800173-8.00005-2

  14. Yamaguchi, T., Isogai, S., Okamura, T., Uozu, S., Mieno, Y., Hoshino, T., Goto, Y., Hayashi, M., Nakanishi, T., & Imaizumi, K. (2015). Pharmacokinetics of gefitinib in a patient with non-small cell lung cancer undergoing continuous ambulatory peritoneal dialysis. Case Reports in Oncology, 8(1), 78–82. https://doi.org/10.1159/000375485

    Article  Google Scholar 

  15. Kalepu, S., & Nekkanti, V. J. (2015). Insoluble drug delivery strategies: Review of recent advances and business prospects. Acta Pharmaceutica Sinca. B, 5(5), 442–453. https://doi.org/10.1016/j.apsb.2015.07.003

    Article  Google Scholar 

  16. Pastore, S., Mascia, F., Mariani, V., & Girolomoni, G. (2008). The epidermal growth factor receptor system in skin repair and inflammation. Journal of Investigative Dermatology, 128(6), 1365–1374. https://doi.org/10.1038/sj.jid.5701184

    Article  Google Scholar 

  17. Jacob, F., Yonis, A. Y., Cuello, F., Luther, P., Schulze, T., Eder, A., Streichert, T., Mannhardt, I., Hirt, M. N., Schaaf, S., & Stenzig, J. (2018). Correction: Analysis of tyrosine kinase inhibitor-mediated decline in contractile force in rat engineered heart tissue. PLoS ONE, 13(11), e0208342. https://doi.org/10.1371/journal.pone.0208342

    Article  Google Scholar 

  18. Satari, N., Taymouri, S., Varshosaz, J., Rostami, M., & Mirian, M. (2020). Preparation and evaluation of inhalable dry powder containing glucosamine-conjugated gefitinib SLNs for lung cancer therapy. Drug Development and Industrial Pharmacy, 46(8), 1265–1277. https://doi.org/10.1080/03639045.2020.1788063

    Article  Google Scholar 

  19. Desai, D., Shende, P. (2021). Cyclodextrin-based gefitinibnanobubbles for synergistic apoptosis in lung cancer. Materials Technology, 1–2. https://doi.org/10.1080/10667857.2021.1969493

  20. Makeen, H. A., Mohan, S., Al-Kasim, M. A., Attafi, I. M., Ahmed, R. A., Syed, N. K., Sultan, M. H., Al-Bratty, M., Alhazmi, H. A., Safhi, M. M., & Ali, R. (2020). Gefitinib loaded nanostructured lipid carriers: Characterization, evaluation and anti-human colon cancer activity in vitro. Drug Delivery, 27(1), 622–631. https://doi.org/10.1080/10717544.2020.1754526

    Article  Google Scholar 

  21. Garizo, A. R., Castro, F., Martins, C., Almeida, A., Dias, T. P., Fernardes, F., Barrias, C. C., Bernardes, N., Fialho, A. M., & Sarmento, B. (2021). p28-functionalized PLGA nanoparticles loaded with gefitinib reduce tumor burden and metastases formation on lung cancer. Journal of Controlled Release, 337, 329–342. https://doi.org/10.1016/j.jconrel.2021.07.035

    Article  Google Scholar 

  22. Allen, T. M., & Cullis, P. R. (2013). Liposomal drug delivery systems: From concept to clinical applications. Advanced Drug Delivery Reviews, 65(1), 36–48. https://doi.org/10.1016/j.addr.2012.09.037

    Article  Google Scholar 

  23. Crommelin, D. J., van Hoogevest, P., & Storm, G. (2020). The role of liposomes in clinical nanomedicine development. What now? Now what? Journal of Controlled Release, 318, 256–263. https://doi.org/10.1016/j.jconrel.2019.12.023

    Article  Google Scholar 

  24. Bozzuto, G., & Molinari, A. J. (2015). Liposomes as nanomedical devices. International Journal of Nanomedicine, 10, 975–999. https://doi.org/10.2147/IJN.S68861

    Article  Google Scholar 

  25. Khan, T., & Gurav, P. J. (2018). PhytoNanotechnology: Enhancing delivery of plant based anti-cancer drugs. Frontiers in Pharmacology, 8, 1002. https://doi.org/10.3389/fphar.2017.01002

    Article  Google Scholar 

  26. Mozafari, M. R., Johnson, C., Hatziantoniou, S., & Demetzos, C. (2008). Nanoliposomes and their applications in food nanotechnology. Journal of Liposome Research, 18, 309–327. https://doi.org/10.1080/08982100802465941

    Article  Google Scholar 

  27. Maeda, H., Bharatea, G. Y., & Daruwallac, J. (2009). Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. European Journal of Pharmaceutics and Biopharmaceutics, 71, 409–419. https://doi.org/10.1016/j.ejpb.2008.11.010

    Article  Google Scholar 

  28. Barenholz, Y. (2012). Doxil® - The first FDA-approved nano-drug: Lessons learned. Journal of Controlled Release, 160, 117–134. https://doi.org/10.1016/j.jconrel.2012.03.020

    Article  Google Scholar 

  29. Zucker, D., Andriyanov, A., Steiner, A., Raviv, U., & Barenholz, Y. (2011). Characterization of PEGylated nanoliposomes co-remotely loaded with topotecan and vincristine: Relating structure and pharmacokinetics to therapeutic efficacy. Journal of Controlled Release, 160, 281–289. https://doi.org/10.1016/j.jconrel.2011.10.003

    Article  Google Scholar 

  30. Chandaroy, P., Sen, A., Alexandridis, P., & Hui, S. (2002). Utilizing temperature-sensitive association of Pluronic F-127 with lipid bilayers to control liposome cell adhesion. Biochimica et Biophysica Acta, 1559, 32–42. https://doi.org/10.1016/S0005-2736(01)00431-X

    Article  Google Scholar 

  31. Mozafari, M. (2010). Nanoliposomes: Preparation and analysis. In: Weissig V. (ed) Liposomes. Methods in molecular biology (methods and protocols) (605, pp. 29–50). Humana Press. https://doi.org/10.1007/978-1-60327-360-2_2

  32. Skupin-Mrugalska, P., & Minko, T. J. (2020). Development of liposomal vesicles for osimertinib delivery to EGFR mutation-positive lung cancer cells. Pharmaceutics, 12(10), 939. https://doi.org/10.3390/pharmaceutics12100939

    Article  Google Scholar 

  33. Koshani, R., & Jafari, S. M. (2019). Ultrasound-assisted preparation of different nanocarriers loaded with food bioactive ingredients. Advances in Colloid and Interface Science, 270, 123–146. https://doi.org/10.1016/j.cis.2019.06.005

    Article  Google Scholar 

  34. Akbarzadeh, A., Rezaei-Sadabady, R., Davaran, S., Joo, S. W., Zarghami, N., Hanifehpour, Y., Samiei, M., Kouhi, M., & Nejati-Koshki, K. (2013). Liposome: Classification preparation and applications. Nanoscale Research Letters, 8(1), 102. https://doi.org/10.1186/1556-276X-8-102

    Article  Google Scholar 

  35. Rohilla, S., & Dureja, H. (2015). Recent patents formulation and characterization of nanoliposomes. Recent Patents on Drug Delivery and Formulation, 9(3), 213–224. https://doi.org/10.2174/1872211309666150629105900

    Article  Google Scholar 

  36. Wagner, A., & Vorauer-Uhl, K. (2011). Liposome technology for industrial purposes. Journal of Drug Delivery, 591325, 1–9. https://doi.org/10.1155/2011/591325

    Article  Google Scholar 

  37. Lal, R., Kumar Marwaha, R., Pandita, D., & Dureja, H. (2012). Formulation and optimization of 5-fluorouracil loaded chitosan nanoparticles employing central composite design. Drug Delivery Letters, 2(4), 281–289.

    Article  Google Scholar 

  38. Pandey, P., Marwaha, K. R., Nanda, A., & Dureja, H. (2016). Spray-dried nanoparticles-in-microparticles system (NiMS) of acetazolamide using central composite design. Nanoscience & Nanotechnology-Asia, 6(2), 146–156.

    Article  Google Scholar 

  39. Guan, T., Miao, Y., Xu, L., Yang, S., Wang, J., He, H., Tang, X., Cai, C., & Xu, H. (2011). Injectable nimodipine-loaded nanoliposomes: Preparation, lyophilization and characteristics. International Journal of Pharmaceutics, 410(1–2), 180–187. https://doi.org/10.1016/j.ijpharm.2011.03.009

    Article  Google Scholar 

  40. Sarrai, A. E., Hanini, S., Merzouk, N. K., Tassalit, D., Szabó, T., Hernádi, K., & Nagy, L. (2016). Using central composite experimental design to optimize the degradation of tylosin from aqueous solution by photofenton reaction. Materials (Basel), 9(6), 428. https://doi.org/10.3390/ma9060428

    Article  Google Scholar 

  41. Panwar, P., Pandey, B., Lakhera, P. C., & Singh, K. P. (2010). Preparation, characterization, and in vitro release study of albendazole-encapsulated nanosize liposomes. International Journal of Nanomedicine, 5, 101–109. https://doi.org/10.2147/ijn.s8030

    Article  Google Scholar 

  42. Solanki, N., Mehta, M., Chellappan, D. K., Gupta, G., Hansbro, N. G., Tambuwala, M. M., Aa Aljabali, A., Paudel, K. R., Liu, G., Satija, S., & Hansbro, P. M. (2020). Antiproliferative effects of boswellic acids-loaded chitosan nanoparticles on human lung cancer cell line A549. Future Medicinal Chemistry, 12(22), 2019–2034.

    Article  Google Scholar 

  43. Haeri, A., Alinaghian, B., Daeihamed, M., & Dadashzadeh, S. (2014). Preparation and characterization of stable nanoliposomal formulation of fluoxetine as a potential adjuvant therapy for drug-resistant tumors. Iranian Journal of Pharmaceutical Research, 13, 3–14.

    Google Scholar 

  44. Khatak, S., Mehta, M., Awasthi, R., Paudel, K. R., Singh, S. K., Gulati, M., Hansbro, N. G., Hansbro, P. M., Dua, K., & Dureja, H. (2020). Solid lipid nanoparticles containing anti-tubercular drugs attenuate the Mycobacterium marinum infection. Tuberculosis, 125, 102008. https://doi.org/10.1016/j.tube.2020.102008

    Article  Google Scholar 

  45. Hadian, Z., Sahari, M. A., Moghimi, H. R., & Barzegar, M. (2014). Formulation, characterization and optimization of liposomes containing eicosapentaenoic and docosahexaenoic acids; a methodology approach. Iranian Journal of Pharmaceutical Research, 13(2), 393–404.

    Google Scholar 

  46. Chan, Y., Ng, S. W., Chellappan, D. K., Madheswaran, T., Zeeshan, F., Kumar, P., Pillay, V., Gupta, G., Wadhwa, R., Mehta, M., Wark, P. (2020). Celastrol-loaded liquid crystalline nanoparticles as an anti-inflammatory intervention for the treatment of asthma.International Journal of Polymeric Materials and Polymeric Biomaterials, 1–10. https://doi.org/10.1080/00914037.2020.1765350

  47. Mehta, M., Dureja, H., & Garg, M. J. (2016). Development and optimization of boswellic acid-loaded proniosomal gel. Drug Delivery, 23(8), 3072–3081. https://doi.org/10.3109/10717544.2016.1149744

    Article  Google Scholar 

  48. Grover, A., & Benet, L. Z. (2011). Intermittent drug dosing intervals guided by the operational multiple dosing half lives for predictable plasma accumulation and fluctuation. Journal of Pharmacokinetics Pharmacodynamics, 38(3), 369–383. https://doi.org/10.1007/s10928-011-9198-0

    Article  Google Scholar 

  49. Pharmacopoeia, I. (1996). Government of India. Ministry of Health and Family Welfare, 2(35), 448.

    Google Scholar 

  50. Ni, X. L., Chen, L. X., Zhang, H., Yang, B., Xu, S., Wu, M., Liu, J., Yang, L. L., Chen, Y., Fu, S. Z., & Wu, J. B. (2017). In vitro and in vivo antitumor effect of gefitinib nanoparticles on human lung cancer. Drug Delivery, 24(1), 1501–1512. https://doi.org/10.1080/10717544.2017.1384862

    Article  Google Scholar 

  51. Mirzayans, R., Andrais, B., Scott, A., Tessier, A., & Murray, D. (2007). A sensitive assay for the evaluation of cytotoxicity and its pharmacologic modulation in human solid tumor-derived cell lines exposed to cancer-therapeutic agents. Journal of Pharmacy and Pharmaceutical Science, 10(2), 298s–311s.

    Google Scholar 

  52. Chiani, M., Norouzian, D., Shokrgozar, M. A., Azadmanesh, K., Najmafshar, A., Mehrabi, M. R., & Akbarzadeh, A. (2018). Folic acid conjugated nanoliposomes as promising carriers for targeted delivery of bleomycin. Artificial Cells Nanomedicine and Biotechnology, 46(4), 757–763. https://doi.org/10.1080/21691401.2017.1337029

    Article  Google Scholar 

  53. Almalik, A., Alradwan, I., Kalam, M. A., & Alshamsan, A. (2017). Effect of cryoprotection on particle size stability and preservation of chitosan nanoparticles with and without hyaluronate or alginate coating. Saudi Pharmaceutical Journal, 25, 861–867. https://doi.org/10.1016/j.jsps.2016.12.008

    Article  Google Scholar 

  54. Cohen, M. H., Williams, G. A., Sridhara, R., Chen, G., & Pazdur, R. (2003). FDA drug approval summary: Gefitinib (ZD1839) (Iressa®) tablets. The Oncologist, 8(4), 303–306.

    Article  Google Scholar 

  55. Zhou, X., Yung, B., Huang, Y., Li, H., Hu, X., Xiang, G., & Lee, R. J. (2012). Novel liposomal gefitinib (L-GEF) formulations. Anticancer Research, 32(7), 2919–2923.

    Google Scholar 

  56. Cheng, L., Jin, C., Lv, W., Ding, Q., & Han, X. (2011). Developing a highly stable PLGA-mPEG nanoparticle loaded with cisplatin for chemotherapy of ovarian cancer. PLoS ONE, 6(9), e25433. https://doi.org/10.1371/journal.pone.0025433

    Article  Google Scholar 

  57. Ding, B., Zhang, X., Hayat, K., Xia, S., Jia, C., Xie, M., & Liu, C. (2011). Preparation, characterization and the stability of ferrous glycinate nanoliposomes. Journal of Food Engineering, 102(2), 202–208. https://doi.org/10.1016/j.jfoodeng.2010.08.022

    Article  Google Scholar 

Download references

Funding

This work was supported by the grant-in-aid to Department of Pharmaceutical Sciences, Maharishi Dayanand University, Rohtak, under the plan of Major Research Project (F.No.-43–485/2014 (SR)) by University Grants Commission, India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kamal Dua or Harish Dureja.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Research Involving Humans and Animals Statement

This research did not involve human and animal study.

Informed Consent

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rohilla, S., Awasthi, R., Mehta, M. et al. Preparation and Evaluation of Gefitinib Containing Nanoliposomal Formulation for Lung Cancer Therapy. BioNanoSci. 12, 241–255 (2022). https://doi.org/10.1007/s12668-022-00938-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-022-00938-6

Keywords

Navigation