Skip to main content

Advertisement

Log in

Effect of Chitosan-Coated Nanostructured Lipid Carrier on Escherichia coli Biofilms

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Antimicrobial delivery systems are useful tools to control biofilm growth on abiotic surfaces such as urinary catheter. The present study examined whether nanostructured lipid carriers coated with chitosan (NLC-chitosan) affected the growth of uropathogenic biofilms of Escherichia coli. NLC-chitosan was prepared using the emulsion and sonication method, and further characterized with respect to particle size, polydispersity index, and zeta potential. After determining the minimum inhibitory and bactericidal concentrations, E. coli biofilms were grown on catheter specimens (following a preliminary study in which E. coli was found to adhere better to the catheter surface than glass slide and plate). At the 48, 72, 96, and 120 h of growth, they were exposed to 0.9% NaCl solution (negative control), 0.12% chlorhexidine solution (positive control), or NLC-chitosan (final chitosan concentration of 0.28%). After 24 h of treatment, the biofilms were collected to analyze their bacterial viability. NLC-chitosan preparation had bimodal particle size distribution with mean size of 292.9 ± 2.5 nm and polydispersity index of 0.24 ± 0.03 and positive zeta potential (+19.1 ± 0.2) indicating the nanoparticle coating by chitosan. Compared with the control groups, NLC-chitosan affected bacterial viability of biofilms at all ages studied (p<0.05). NLC-chitosan can effectively control the growth of young and mature biofilms of uropathogenic E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Donlan, R. M. (2001). Biofilms and device-associated infections. Emerging Infectious Diseases, 7, 277–281. https://doi.org/10.3201/eid0702.010226.

    Article  Google Scholar 

  2. Percival, S. L., Suleman, L., Vuotto, C., & Donelli, G. (2015). Healthcare-associated infections, medical devices and biofilms: risk, tolerance and control. Journal of Medical Microbiology, 64, 323–334. https://doi.org/10.1099/jmm.0.000032.

    Article  Google Scholar 

  3. Wi, Y. M., & Patel, R. (2018). Understanding biofilms and novel approaches to the diagnosis, prevention, and treatment of medical device-associated infections. Infectious Disease Clinics of North America, 32, 915–929. https://doi.org/10.1016/j.idc.2018.06.009.

    Article  Google Scholar 

  4. Kumar, A., Alam, A., Rani, M., Ehtesham, N. Z., & Hasnain, S. E. (2017). Biofilms: survival and defense strategy for pathogens. International Journal of Medical Microbiology, 307, 481–489. https://doi.org/10.1016/j.ijmm.2017.09.016.

    Article  Google Scholar 

  5. Lebeaux, D., Chauhan, A., Rendueles, O., & Beloin, C. (2013). From in vitro to in vivo models of bacterial biofilm-related infections. Pathogens, 2, 288–356. https://doi.org/10.3390/pathogens2020288.

    Article  Google Scholar 

  6. Beloqui, A., Solinís, M. Á., Rodríguez-Gascón, A., Almeida, A. J., & Préat, V. (2016). Nanostructured lipid carriers: promising drug delivery systems for future clinics. Nanomedicine, 12, 143–161. https://doi.org/10.1016/j.nano.2015.09.004.

    Article  Google Scholar 

  7. Bugnicourt, L., & Ladavière, C. (2017). A close collaboration of chitosan with lipid colloidal carriers for drug delivery applications. Journal of Controlled Release, 256, 121–140. https://doi.org/10.1016/j.jconrel.2017.04.018.

    Article  Google Scholar 

  8. Muxika, A., Etxabide, A., Uranga, J., Guerrero, P., & de la Caba, K. (2017). Chitosan as a bioactive polymer: processing, properties and applications. International Journal of Biological Macromolecules, 105, 1358–1368. https://doi.org/10.1016/j.ijbiomac.2017.07.087.

    Article  Google Scholar 

  9. Ali, A., & Ahmed, S. (2018). A review on chitosan and its nanocomposites in drug delivery. International Journal of Biological Macromolecules, 109, 273–286. https://doi.org/10.1016/j.ijbiomac.2017.12.078.

    Article  Google Scholar 

  10. Casadidio, C., Peregrina, D. V., Gigliobianco, M. R., Deng, S., Censi, R., & Martino, P. D. (2019). Chitin and chitosans: characteristics, eco-friendly processes, and applications in cosmetic science. Marine Drugs, 17, 369. https://doi.org/10.3390/md17060369.

    Article  Google Scholar 

  11. Anghel, I., & Grumezescu, A. M. (2013). Hybrid nanostructured coating for increased resistance of prosthetic devices to staphylococcal colonization. Nanoscale Research Letters, 8, 6. https://doi.org/10.1186/1556-276X-8-6.

    Article  Google Scholar 

  12. Aires, C. P., Del Bel Cury, A. A., Tenuta, L. M. A., Klein, M. I., Koo, H., Duarte, S., & Cury, J. A. (2008). Effect of starch and sucrose on dental biofilm formation and on root dentine demineralization. Caries Research, 42, 380–386. https://doi.org/10.1159/000154783.

    Article  Google Scholar 

  13. Herigstad, B., Hamilton, M., & Heersink, J. (2001). How to optimize the drop plate method for enumerating bacteria. Journal of Microbiological Methods, 44, 121–129. https://doi.org/10.1016/S0167-7012(00)00241-4.

    Article  Google Scholar 

  14. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. https://doi.org/10.1016/0003-2697(76)90527-3.

    Article  Google Scholar 

  15. DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350–356. https://doi.org/10.1021/ac60111a017.

    Article  Google Scholar 

  16. Pivetta, T. P., Simões, S., Araújo, M. M., Carvalho, T., Arruda, C., & Marcato, P. D. (2018). Development of nanoparticles from natural lipids for topical delivery of thymol: investigation of its anti-inflammatory properties. Colloids and Surfaces. B, Biointerfaces, 164, 281–290. https://doi.org/10.1016/j.colsurfb.2018.01.053.

    Article  Google Scholar 

  17. Pivetta, T. P., Silva, L. B., Kawakami, C. M., Araújo, M. M., Del Lama, M. P. F. M., Naal, R. M. Z. G., Maria-Engler, S. S., Gaspar, L. R., & Marcato, P. D. (2019). Topical formulation of quercetin encapsulated in natural lipid nanocarriers: evaluation of biological properties and phototoxic effect. Journal of Drug Delivery Science and Technology, 53, 101148. https://doi.org/10.1016/j.jddst.2019.101148.

    Article  Google Scholar 

  18. Clinical and Laboratory Standards Institute. (2012). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. CLSI, [approved standard - ninth edition. Document M07-A9, vol. 32, n. 2].

  19. Galván, E. M., Mateyca, C., & Ielpi, L. (2016). Role of interspecies interactions in dual-species biofilms developed in vitro by uropathogens isolated from polymicrobial urinary catheter-associated bacteriuria. Biofouling, 32, 1067–1077. https://doi.org/10.1080/08927014.2016.1231300.

    Article  Google Scholar 

  20. Doyle, R. J. (2000). Contribution of the hydrophobic effect to microbial infection. Microbes and Infection, 2, 391–400. https://doi.org/10.1016/s1286-4579(00)00328-2.

    Article  Google Scholar 

  21. Gomes, L. C., Silva, L. N., Simões, M., Melo, L. F., & Mergulhão, F. J. (2015). Escherichia coli adhesion, biofilm development and antibiotic susceptibility on biomedical materials. Journal of Biomedical Materials Research. Part A, 103, 1414–1423. https://doi.org/10.1002/jbm.a.35277.

    Article  Google Scholar 

  22. Flemming, H.-C., & Wingender, J. (2010). The biofilm matrix. Nature Reviews. Microbiology, 8, 623–633. https://doi.org/10.1038/nrmicro2415.

    Article  Google Scholar 

  23. Flemming, H.-C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S. A., & Kjelleberg, S. (2016). Biofilms: an emergent form of bacterial life. Nature Reviews. Microbiology, 14, 563–575. https://doi.org/10.1038/nrmicro.2016.94.

    Article  Google Scholar 

  24. Stewart, P. S., & Costerton, J. W. (2001). Antibiotic resistance of bacteria in biofilms. Lancet, 358, 135–138. https://doi.org/10.1016/s0140-6736(01)05321-1.

    Article  Google Scholar 

  25. Paula, A. J., & Koo, H. (2017). Nanosized building blocks for customizing novel antibiofilm approaches. Journal of Dental Research, 96, 128–136. https://doi.org/10.1177/0022034516679397.

    Article  Google Scholar 

  26. Rampino, A., Borgogna, M., Blasi, P., Bellich, B., & Cesàro, A. (2013). Chitosan nanoparticles: preparation, size evolution and stability. International Journal of Pharmaceutics, 455, 219–228. https://doi.org/10.1016/j.ijpharm.2013.07.034.

    Article  Google Scholar 

  27. Sreekumar, S., Goycoolea, F. M., Moerschbacher, B. M., & Rivera-Rodriguez, G. R. (2018). Parameters influencing the size of chitosan-TPP nano- and microparticles. Scientific Reports, 8, 4695.

    Article  Google Scholar 

  28. Zaki, S. S. O., Ibrahim, M. N., & Katas, H. (2015). Particle size affects concentration-dependent cytotoxicity of chitosan nanoparticles towards mouse hematopoietic stem cells. Journal of Nanotechnology, 2015, 919658. https://doi.org/10.1155/2015/919658.

    Article  Google Scholar 

  29. Müller, R. H., Jacobs, C., & Kayser, O. (2001). Nanosuspensions as particulate drug formulations in therapy rationale for development and what we can expect for the future. Advanced Drug Delivery Reviews, 47, 3–19. https://doi.org/10.1016/S0169-409X(00)00118-6.

    Article  Google Scholar 

  30. Moore, T. L., Rodriguez-Lorenzo, L., Hirsch, V., Balog, S., Urban, D., Jud, C., Rothen-Rutishauser, B., Lattuada, M., & Petri-Fink, A. (2015). Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chemical Society Reviews, 44, 6287–6305. https://doi.org/10.1039/c4cs00487f.

    Article  Google Scholar 

  31. Kampf, G. (2019). Adaptive bacterial response to low level chlorhexidine exposure and its implications for hand hygiene. Microbial Cell, 6, 307–320. https://doi.org/10.15698/mic2019.07.683.

    Article  Google Scholar 

  32. Schmudde, Y., Olson-Sitki, K., Bond, J., & Chamberlain, J. (2019). Navel to knees with chlorhexidine gluconate: preventing catheter-associated urinary tract infections. Dimensions of Critical Care Nursing, 38, 236–240. https://doi.org/10.1097/DCC.0000000000000371.

    Article  Google Scholar 

  33. Kampf, G. (2016). Acquired resistance to chlorhexidine - is it time to establish an 'antiseptic stewardship' initiative? The Journal of Hospital Infection, 94, 213–227. https://doi.org/10.1016/j.jhin.2016.08.018.

    Article  Google Scholar 

  34. Aires, C. P., Batista, M. J. A., & Pitondo-Silva, A. (2017). Decrease of ceftriaxone susceptibility in Klebsiella pneumoniae according to biofilm maturation. Journal of Global Antimicrobial Resistance, 9, 126–127. https://doi.org/10.1016/j.jgar.2017.05.001.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr Marcelo C. Alves for helping us to perform the statistical analysis, Dr Luciana Kabeya for the English corrections, and Mr. Alcides Silva Pereira for his technical assistance.

Funding

This study was supported by the Brazilian funding agencies São Paulo Research Foundation (FAPESP; grant no. 2015/17712-9) and Coordination for the Improvement of Higher Education Personnel (CAPES; Finance Code 001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Oluwole Osungunna.

Ethics declarations

Conflict of Interest

None.

Research Involving Human and/or Animals

None.

Informed Consent

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osungunna, M.O., Pitondo-Silva, A., Silva, L.B. et al. Effect of Chitosan-Coated Nanostructured Lipid Carrier on Escherichia coli Biofilms. BioNanoSci. 11, 762–769 (2021). https://doi.org/10.1007/s12668-021-00872-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-021-00872-z

Keywords

Navigation