Skip to main content

Advertisement

Log in

Efficacy of Juniperus procera Constituents with Silver Nanoparticles Against Aspergillus fumigatus and Fusarium chlamydosporum

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Several plant extracts and their phytoconstituents are known as a promising alternative to chemically synthetic antimicrobial agents due to the presence of diverse active components and its limited side effects. GC-MS of Juniperus procera leaf and fruit extracts revealed the presence of various ingredients. Based on the antifungal results, leaf extract of J. procera at 100 mg/ml showed 35.83 and 44.09% growth inhibition, but increased to 50.55 and 59.06% after addition of 50 ppm silver nanoparticles (AgNPs) against Aspergillus fumigatus and Fusarium chlamydosporum, respectively. Fungal growth was induced at low concentration (25 mg/ml) and negligible inhibition was observed at 100 mg/ml of fruit extract. Nivalenol production was inhibited to 72.79% and 78.03% with using 100 mg/ml and 50 mg/ml respectively, and completely inhibited at 25 mg/ml leaf extract. Fumagillin was also completely inhibited at 25 and 50 mg/ml leaf extract, but 25 mg/ml leaf extract stimulated gliotoxin (25.96 ppm) and neosolaniol production (55.36 ppm). Nivalenol and gliotoxin production was decreased while neosolaniol completely inhibited with using J. procera fruit extract. The combination of AgNPs with J. procera fruit extract inhibited effectively the gliotoxin and nivalenol mycotoxins production than extract alone. Results indicated that there is no relationship between fungal growth and mycotoxins production. The existence of different compounds in J. procera may reflect its pharmacological properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mulugeta, M., Khan, F., Gizachew, M., & Archana, P. (2019). Phytochemical profile and antimicrobial effects of different medicinal plant: current knowledge and future perspectives. Current Traditional Medicine, 5, 1. https://doi.org/10.2174/2215083805666190730151118.

    Article  Google Scholar 

  2. Mesa-Arango, A. C., Trevijano-Contador, N., Roman, E., Sanchez-Fresneda, R., Casas, C., & Herrero, E. (2014). The production of reactive oxygen species is a universal action mechanism of amphotericin B against pathogenic yeasts and contributes to the fungicidal effect of this drug. Antimicrobial Agents and Chemotherapy, 58, 6627–6638.

    Google Scholar 

  3. Abdel Ghany, T. M. (2015). Safe food additives: a review. Journal of Biological and Chemical Research, 32, 402–437.

    Google Scholar 

  4. Abdel Ghany, T. M., Roushdy, M. M., & Mohamed, A. A. (2015a). Efficacy of certain plant extracts as safe fungicides against phytopathogenic and mycotoxigenic fungi. Agricultural and Biological Sciences Journal, 1(3), 71–75.

    Google Scholar 

  5. Abdel Ghany, T. M., Shater, A. M., Negm, M. E., Al Abboud, M. A., & Elhussieny, N. I. (2015b). Efficacy of botanical fungicides against Curvularia lunata at molecular levels. Journal Plant Pathology and Microbiology, 6, 289. https://doi.org/10.4172/2157-7471.1000289.

    Article  Google Scholar 

  6. Abdel Ghany, T. M., El-Naggar, M. A., Ganash, M. A., & Al Abboud, M. A. (2017). PCR identification of Aspergillus niger with using natural additives for controlling and detection of malformins and maltoryzine production by HPLC. BioNanoScience, 7, 588–596.

    Google Scholar 

  7. Ganash, M., & Qanash, S. (2018). Phenolic acids and biological activities of Coleus forskohlii and Plectranthus barbatus as traditional medicinal plants. International Journal of Pharmacology, 14, 856–865. https://doi.org/10.3923/ijp.2018.856.865.

    Article  Google Scholar 

  8. Hada, D., & Sharma, K. (2018). Isolation and characterization of chemical compounds from fruit pulp of Cassia fistula and their antimicrobial activity. Journal of Drug Delivery and Therapeutics, 8, 15–20.

    Google Scholar 

  9. Barupal, T., Mukesh, M., & Kanika, S. (2019). Inhibitory effects of leaf extract of Lawsonia inermis on Curvularia lunata and characterization of novel inhibitory compounds by GC-MS analysis. Biotechnology Reports, 23, e00335. https://doi.org/10.1016/j.btre.2019.e00335.

    Article  Google Scholar 

  10. Topçu, G., Erenler, R., Cakmak, O., Johansson, C. B., Celik, C., Chai, H. B., et al. (1999). Diterpenes from the berries of Juniperus excelsa. Phytochemistry., 50, 1195–1199.

    Google Scholar 

  11. Samaha, H. A. M., Ali, N. A. A., Mansi, I., & Abu-El-Halawa, R. (2017). Antimicrobial, antiradical and xanthine oxidase inhibitory activities of Juniperus procera plant extracts from Albaha. World Journal of Pharmaceutical Sciences, 6(2), 232–242.

    Google Scholar 

  12. Burits, M., Asres, K., & Bucar, F. (2001). The antioxidant activity of the essential oils of Artemisia afra, Artemisia abyssinica and Juniperus procera. Phytotherapy Research, 15, 103–108.

    Google Scholar 

  13. Loizzo, M. R., Tundis, R., Conforti, F., Saab, A. M., Statti, G. A., & Menichini, F. (2007). Comparative chemical composition, antioxidant and hypoglycaemic activities of Juniperus oxycedrus ssp. oxycedrus L. berry and wood oils from Lebanon. Food Chemistry, 105, 572–578.

    Google Scholar 

  14. Lesjak, M. M., Beara, I. N., Orčić, D. Z., Anačkov, G. T., Balog, K. J., Francišković, M. M., Neda, M., & Mimica-Dukić, N. M. (2011). Juniperus sibirica Burgsdorf as a novel source of antioxidant and anti-inflammatory agents. Food Chemistry, 124, 850–856.

    Google Scholar 

  15. Özturk, M., Tümen, I., Uğur, A., Aydoğmus, F., & Topcu, G. (2011). Evaluation of fruit extracts of six Turkish Juniperus species for their antioxidant, anticholinesterase and antimicrobial activities. Journal of the Science of Food and Agriculture, 91(5), 867–876.

    Google Scholar 

  16. Abdel Ghany, T. M., & Hakamy, O. M. (2014). Juniperus procera as food safe additive, their antioxidant, anticancer and antimicrobial activity against some food-borne bacteria. Journal of Biological and Chemical Research, 31(2), 668–677.

    Google Scholar 

  17. Abdel Ghany, T. M. (2014). Eco-friendly and safe role of Juniperus procera in controlling of fungal growth and secondary metabolites. Journal of Plant Pathology & Microbiology, 5, 231. https://doi.org/10.4172/2157-7471.1000231.

    Article  Google Scholar 

  18. Joshi, S., Parikshit, K., Prabha, P., & Sati, S. C. (2018). A comparative evaluation of Kumaun Himalayan gymnosperms for their antifungal potential against plant pathogenic fungi. The Journal of Phytopharmacology, 7(3), 230–241.

    Google Scholar 

  19. Sarić-Kundalić, B., Dobeš, C., Klatte-Asselmeyer, V., & Saukel, J. (2011). Ethnobotanical survey of traditionally used plants in human therapy of east, north and northeast Bosnia and Herzegovina. Journal of Ethnopharmacology, 133, 1051–1076.

    Google Scholar 

  20. Nyssen, J., Poessen, J., Moeyersons, J., Deckers, J., Haile, M., & Lang, A. (2004). Human impact on the environment in the Ethiopian and Eritrean highlands - a state of the art. Earth-Science Reviews, 64(3–4), 273–320. https://doi.org/10.1016/S0012-8252(03)00078-3.

    Article  Google Scholar 

  21. Al-Attar, A. M., Alrobai, A. A., & Almalki, D. A. (2016). Effect of Olea oleaster and Juniperus procera leaves extracts on thioacetamide induced hepatic cirrhosis in male albino mice. Saudi Journal of Biological Sciences, 23, 363–371. https://doi.org/10.1016/j.sjbs.2015.08.011.

    Article  Google Scholar 

  22. Muhammad, I., Mossa, J. S., & El-Feraly, F. S. (1996). Additional antibacterial diterpenes from the bark of Juniperus procera. Phytotherapy Research, 10, 604–607.

    Google Scholar 

  23. Pankaj, K., Bhatt, R. P., Sati, O. P., Vinod, K. D., & Lokendra, S. (2010). In-vitro antifungal activity of different fraction of Juniperus communis leaves and bark against Aspergillus niger and Aflatoxigenic Aspergillus flavus. International Journal of Pharma and Bio Sciences, 1, 1–7.

    Google Scholar 

  24. Yarelis Ortiz-Nunez, Y., Spengler Salabarria, I., Collado, I. G., & Hernandez-Galan, R. (2010). Antifungal activity of extracts and terpene constituents of aerial parts of Juniperus lucayana. ev. Latinoamer. Revista Latinoamericana de Quimica, 38, 145–152.

    Google Scholar 

  25. Pirzada, A. J., Shaikh, W., Kazi, T. G., Pervaiz, I., Usmanghani, K., & Hayee-Memon, A. (2005). Isolation of essential elements and inhibition production of medicinal plant Datura alba seeds against human pathogenic fungi. Hamdard Medical, 48, 80–86.

    Google Scholar 

  26. El Jemli, M., Naima, K., Khadija, L., Driss, T., Yousra, E., Ilias, M., El Mahdi, W., Yahia, C., & Katim, A. (2018). Antifungal and insecticidal properties of Juniperus thurifera leaves. Natural Product Communications, 13(8), 1047–1049.

    Google Scholar 

  27. Cavaleiro, C., Pinto, E., Gonçalves, M. J., & Salgueiro, L. (2006). Antifungal activity of Juniperus essential oils against dermatophyte, Aspergillus and Candida strains. Journal of Applied Microbiology, 100, 1333–1338.

    Google Scholar 

  28. Cosentino, S., Barra, A., Pisano, B., Cabisa, M., Pirisi, F., & Palmas, M. (2003). Composition and antimicrobial proprieties of Sardinian Juniperus essential oils against foodborne pathogens and spoilage microorganisms. Journal of Food Protection, 66, 1288–1291.

    Google Scholar 

  29. Samoylenko, V., Dunbar, D. C., Gafur, M. D. A., Khan, S. I., Ross, S. A., Mossa, J. S., El-Feraly, F. S., Tekwani, B. L., Bosselaers, J., & Muhammad, I. (2008). Antiparasitic, nematicidal and antifouling constituents from Juniperus berries. Phytotherapy Research, 22, 1570–1576.

    Google Scholar 

  30. Muhammad, I., Mossa, J. S., Al-Yahya, M. A., Ramadan, A. F., & El-Feraly, F. S. (1995). Further antibacterial diterpenes from the bark and leaves of Juniperus procera Hochst. ex Endl. Phytotherapy Research, 9, 584–588.

    Google Scholar 

  31. Mossa, J. S., El-Feraly, F. S., & Muhammad, I. (2004). Antimycobacterial constituents from Juniperus procera, Ferula communis and Plumbago zeylanica and their in vitro synergistic activity with isonicotinic acid hydrazide. Phytotherapy Research, 18, 934–937. https://doi.org/10.1002/ptr.1420.

    Article  Google Scholar 

  32. Halkai, K. R., Mudda, J. A., Shivanna, V., Rathod, V., & Halkai, R. (2018). Evaluation of antibacterial efficacy of fungal-derived silver nanoparticles against Enterococcus faecalis. Contemporary Clinical Dentistry, 9(1), 45–48. https://doi.org/10.4103/ccd.ccd_703_17.

    Article  Google Scholar 

  33. Javaid, A., Oloketuyi, S. F., Mohammad Mansoob Khan, M. M., & Khan, F. (2018). Diversity of bacterial synthesis of silver nanoparticles. BioNanoScience, 8(1), 43–59. https://doi.org/10.1007/s12668-017-0496-x.

    Article  Google Scholar 

  34. Ganash, M., Abdel Ghany, T. M., & Omar, A. M. (2018). Morphological and biomolecules dynamics of phytopathogenic fungi under stress of silver nanoparticles. BioNanoScience, 8(2), 566–573. https://doi.org/10.1007/s12668-018-0510-y.

    Article  Google Scholar 

  35. Rauwel, P., Küünal, S., Ferdov, S., & Rauwel, E. (2015). A review on the green synthesis of silver nanoparticles and their morphologies studied via TEM. Adv Mater Sci Eng, 2015, Article ID 682749, 9 pages. https://doi.org/10.1155/2015/682749.

  36. Abdel Ghany, T. M., Aisha, M. A.-R., Al Abboud, M. A., Alawlaqi, M. M., Magdah, G., Helmy, E. M., & Mabrouk, A. S. (2018). Recent advances in green synthesis of silver nanoparticles and their applications: about future directions. A review. BioNanoScience, 8(1), 5–16. https://doi.org/10.1007/s12668-017-0413-3.

    Article  Google Scholar 

  37. Alqasoumi SI (2007) Isolation and chemical structure elucidation of hepatoprotective constituents from plants used in traditional medicine in Saudi Arabia. Riyadh: College of Pharmacy, King Saud University. Ph.D

  38. Migahid, A. M. (1974). Flora of Saudi Arabia. Vol. 1, Cryptogams and dicotyledons equisetaceae to neuradaceae (4th ed.). Riyadh: King Saud University Press.

    Google Scholar 

  39. Chaudhary, S. A. (1997). Flora of the Kingdom of Saudi Arabia, Vol. 1, National Agriculture and Water Research Centre (p. 691). Saudi Arabia: Ministry of Agriculture.

    Google Scholar 

  40. Raper, K. B., & Fennell, D. I. (1973). The genus Aspergillus. New York: Robert E Krieger Publishing Company.

    Google Scholar 

  41. Booth, C. (1977). Fusarium laboratory guide to the identification of the major species. Commonwealth Mycological Institute.

  42. Samson, R. A., Hoekstra, E. S., & Van Oorschot, C. A. (1981). Introduction to food-borne fungi. Centraalbureau voor Schimmelcultures.

  43. Barnett, H. L., & Hunter, B. B. (1998). Illustrated genera of imperfect fungi. Minnesota: APS press.

    Google Scholar 

  44. Leslie, J. F., Summerell, B. A., & Bullock, S. (2006). The Fusarium laboratory manual. Wiley Online Library.

  45. Singh, P., Shukla, R., Prakash, B., Kumar, A., Singh, S., Mishra, P. K., & Dubey, N. K. (2010). Chemical profile, antifungal, antiaflatoxigenic and antioxidant activity of Citrus maxima Burm. and Citrus sinensis (L.) Osbeck essential oils and their cyclic monoterpene, dl-limonene. Food and Chemical Toxicology, 48, 1734–1740.

    Google Scholar 

  46. Kumar, R., Mishra, A. K., Dubey, N. K., & Tripathi, Y. B. (2007). Evaluation of Chenopodium ambrosioides oil as a potential source of antifungal, antiaflatoxigenic and antioxidant activity. International Journal of Food Microbiology, 115, 159–164.

    Google Scholar 

  47. Binder, E. M., Tan, L. M., Chin, L. J., Handl, J., & Richard, J. (2007). Worldwide occurrence of mycotoxins in commodities, feeds and feed ingredients. Animal Feed Science and Technology, 137(3–4), 265–282.

    Google Scholar 

  48. Mohamed, A. M., Monira, R. A., & Abd El-aziz, A. (2013). Mycotoxigenic fungi contaminating corn and sorghum grains in Saudi Arabia. Pakistan Journal of Botany, 45(5), 1831–1839.

    Google Scholar 

  49. Jedidi, I., Soldevilla, C., Lahouar, A., Marín, P., González-Jaén, M. T., & Said, S. (2018). Mycoflora isolation and molecular characterization of Aspergillus and Fusarium species in Tunisian cereals. Saudi Journal of Biological Sciences, 25(5), 868–874. https://doi.org/10.1016/j.sjbs.2017.11.050.

    Article  Google Scholar 

  50. Ali, A. A., & Elgimabi, M. N. (2015). Extraction and determination of antioxidants, polyphenols, flavonoids and antioxidant activity in some plants. International Journal of Chemical Sciences, 13(4), 1883–1892.

    Google Scholar 

  51. Kim, J. S., Kwon, C. S., & Son, K. H. (2000). Inhibition of alpha-glucosidase and amylase by luteolin, a flavonoid. Bioscience, Biotechnology, and Biochemistry, 64, 2458–2461.

    Google Scholar 

  52. Keskes, H., Belhadj, S., Jlail, L., El Feki, A., Damak, M., Sayadi, S., & Allouche, N. (2017). LC-MS–MS and GC-MS analyses of biologically active extracts and fractions from Tunisian Juniperus phoenice leaves. Pharmaceutical Biology, 55(1), 88–95. https://doi.org/10.1080/13880209.2016.1230139.

    Article  Google Scholar 

  53. Manel, J. B., Fatma, G., Abdel Halim, H., Saleh, A., Amor, H., Sana, N., Ahmed, L., Badr, A., & Mossadok, B. (2015). Investigation of antiulcer and antioxidant activity of Juniperus phoenicea L. (1753) essential oil in an experimental rat model. Biological and Pharmaceutical Bulletin, 38(11), 1738–1746. https://doi.org/10.1248/bpb.b15-00412.

    Article  Google Scholar 

  54. Alqasoumi, S. I., & Abdel-Kader, S. A. (2012). Terpenoids from Juniperus procera with hepatoprotective activity. Pakistan Journal of Pharmaceutical Sciences, 25(2), 315–322.

    Google Scholar 

  55. Mujwah, A. A., Mohammed, A. M., & Mohammed, H. A. (2010). First isolation of a flavonoid from Juniperus procera using ethyl acetate extract. Arabian Journal of Chemistry, 3(2), 85–88.

    Google Scholar 

  56. Emami, S. A., Abedindo, B. F., & Hassanzadeh-Khayyat, M. (2010). Antioxidant activity of the essential oils of different parts of Juniperus excelsa M. Bieb. subsp. excelsa and J. excelsa M. Bieb. subsp. polycarpos (K. Koch) Takhtajan (Cupressaceae). Iranian Journal of Pharmaceutical Research, 10(4), 799–810.

    Google Scholar 

  57. Carmen, M. P., Nicoleta, G. H., Daniel, I. H., Valentin, L. O., Alexandra, T. G., Alina, G. B., Aurel, A., & Alfa, X. L. (2011). Caryophyllene from Juniperus communis and Juniperus virginiana Romanian extracts. J Agroaliment Process Technol, 17(1), 54–57.

    Google Scholar 

  58. Barrero, A., Quilez, M. J., Lara, A., & Herrador, M. (2005). Antimicrobial activity of sesquiterpenes from the essential oil of Juniperus thurifera wood. Planta Medica, 71(1), 67–71.

    Google Scholar 

  59. Jegadeeswari, P., Nishanthini, A., Muthukumarasamya, S., & Mohan, V. R. (2012). GC-MS analysis of bioactive components of Aristolochia krysagathra (aristolochiaceae). Journal of Current Chemical and Pharmaceutical Sciences, 2(4), 226–232.

    Google Scholar 

  60. Al-Rubaye, A. F., Kaizal, A. F., & Hameed, I. H. (2017). Phytochemical screening of methanolic leaves extract of Malva sylvestris. International Journal of Pharmacognosy and Phytochemical Research, 9(4), 537–552. https://doi.org/10.25258/phyto.v9i2.8127.

    Article  Google Scholar 

  61. Kilic, T. (2006). Isolation and biological activity of new and known diterpenoids from Sideritis stricta Boiss. & Heldr. Molecules, 11(4), 257–262. https://doi.org/10.3390/11040257.

    Article  MathSciNet  Google Scholar 

  62. Zheljazkov, V. D., Semerdjieva, I. B., Dincheva, I., Kacaniova, M., Astatkie, T., Radoukova, T., & Schlegel, V. (2017). Antimicrobial and antioxidant activity of Juniper galbuli essential oil constituents eluted at different times. Industrial Crops and Products, 109, 529–537.

    Google Scholar 

  63. Nikolić, B., Vasilijević, B., Ćirić, A., Mitić-Ćulafić, D., Cvetković, S., Džamić, A., & Knežević-Vukčević, J. (2019). Bioactivity of Juniperus communis essential oil and post-distillation waste: Assessment of selective toxicity against food contaminants. Archives of Biological Sciences, 71(2), 235–244. https://doi.org/10.2298/ABS181217005N.

    Article  Google Scholar 

  64. Clark, M. A., McChesney, J. D., & Adams, R. P. (1990). Antimicrobial properties of heartwood, bark/sapwood and leaves of Juniperus species. Phytotherepy Research, 4(1), 15–19.

    Google Scholar 

  65. Nunez, Y. O., Salabarria, I. S., Collado, I. G., & Hernandez-Galan, R. (2007). Sesquiterpenes from the wood of Juniperus lucayana. Phytochemistry, 68, 2409–2414.

    Google Scholar 

  66. Khalil, N. M., Abd El-Ghany, M. N., & Rodríguez-Couto, S. (2019). Antifungal and anti-mycotoxin efficacy of biogenic silver nanoparticles produced by Fusarium chlamydosporum and Penicillium chrysogenum at non-cytotoxic doses. Chemosphere, 218, 477–486.

    Google Scholar 

  67. Safaa, M. A., Naeima, M. H., & Nivien, A. N. (2015). Application of biosynthesized silver nanoparticles for the control of land snail Eobania vermiculata and some plant pathogenic fungi. Journal of Nanomaterials, 2015, Article ID 218904, 10 p. https://doi.org/10.1155/2015/218904.

  68. Majeed, A., Ullah, W., Anwar, A. W., Shuaib, A., Ilyas, U., Khalid, P., Mustafa, G., Junaid, M., Faheem, B., & Ali, S. (2016). Cost-effective biosynthesis of silver nanoparticles using different organs of plants and their antimicrobial applications: a review. Materials and Technologies, 1-8.

  69. Mohanta, Y. K., Panda, S. K., Jayabalan, R., Sharma, N., Bastia, A. K., & Mohanta, T. K. (2017). Antimicrobial, antioxidant and cytotoxic activity of silver nanoparticles synthesized by leaf extract of Erythrina suberosa (Roxb.). Frontiers in Molecular Biosciences, 4, 14.

    Google Scholar 

  70. Prakash, B., Singh, P., Mishra, P. K., & Dubey, N. K. (2011). Safety assessment of Zanthoxylum alatum Roxb. essential oil, its antifungal, antiaflatoxin, antioxidant activity and efficacy as antimicrobial in preservation of Piper nigrum L. fruits. International Journal of Food Microbiology, 153, 183–191.

    Google Scholar 

  71. Abdel Ghany, T. M., Ganash, M. A., Marwah, M. B., Aisha, M. H. A.-R., Mohamed, A., & Abboud, A. (2016). Evaluation of natural sources for repress cytotoxic Trichothecenes and Zearalenone production with using enzyme-linked immunosorbent assay. Life Science Journal, 13(8), 74–86. https://doi.org/10.7537/marslsj130816.13.

    Article  Google Scholar 

  72. Panda, P., Aiko, V., & Mehta, A. (2014). Effect of aqueous extracts of Mentha arvensis (mint) and Piper betle (betel) on growth and citrinin production from toxigenic Penicillium citrinum. Journal of Food Science and Technology, 52(6), 3466–3474. https://doi.org/10.1007/s13197-014-1390-y.

    Article  Google Scholar 

  73. Abd Aliael-SA, & Badawey, A. (1991). Inhibitory effect of hena (Lawsonia inermis leaves) and carrot root on aflatoxin production by Aspergillus parasiticus. Mycotoxin Research, 7(2), 61–68. https://doi.org/10.1007/BF03192167.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Abdel Ghany.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interests.

Research Involving Human Participants or Animals

None.

Informed Consent

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakri, M.M., El-Naggar, M.A., Helmy, E.A. et al. Efficacy of Juniperus procera Constituents with Silver Nanoparticles Against Aspergillus fumigatus and Fusarium chlamydosporum. BioNanoSci. 10, 62–72 (2020). https://doi.org/10.1007/s12668-019-00716-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-019-00716-x

Keywords

Navigation