Skip to main content

Advertisement

Log in

Antibacterial and Antioxidant Activity of Different Staged Ripened Fruit of Capsicum annuum and Its Green Synthesized Silver Nanoparticles

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Functional metabolites are believed to possess different bioactivities; thus, three different stages of ripened fruit (green, yellow, red) of Capsicum annuum were collected from Chennai, Tamil Nadu, India, and were used in this study. The aqueous extract of Capsicum annuum was screened for various phytochemical compounds and subjected to TLC bioautography and antibacterial and antioxidant activities. The aqueous extract of yellow-colored Capsicum annuum showed the highest antibacterial activity against Pseudomonas aeruginosa and also showed the highest antioxidant activity. Furthermore, silver nanoparticles were synthesized using the aqueous extract and characterized by UV-Vis, FTIR, SEM, and AFM analysis. The silver nanoparticles were investigated for its bactericidal activity. The silver nanoparticles produced using the extract of green-colored Capsicum annuum showed the highest bactericidal activity which was evidenced by protein leakage assay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Samrot, A. V., Rohan, B., Kumar, D., Sahiti, K., Raji, P., & Samanvitha, S. K. (2016). Detection of antioxidant and antibacterial activity of Mangifera indica using TLC bio-autography. International Journal of Pharmaceutical Sciences and Research, 7(11), 4467–4472.

    Google Scholar 

  2. Sahiti, K., Raji, P., Rohan, B., Kumar, D., & Samrot, A. V. (2016). In vitro bioactivity screening of Desmostachya bipinnata. Research Journal of Pharmacy and Technology, 9(4), 361–364.

    Article  Google Scholar 

  3. Amin, M. M., Sawhney, S. S., & Jassal, M. M. S. (2013). Qualitative and quantitative analysis of phytochemicals of Taraxacum officinale. Wudpecker Journal of Pharmacy and Pharmocology, 2(1), 001–005.

    Google Scholar 

  4. Ortega, M. H., Moreno, A. O., Navarro, M. D. H., Cevallos, G. C., Alvarez, L. D., & Mondragon, H. N. (2012). Antioxidant, antinociceptive, and anti-inflammatory effects of carotenoids extracted from dried pepper (Capsicum annuum L.). Journal of Biomedicine and Biotechnology, 524019, 1–10.

    Article  Google Scholar 

  5. Bhutia, K. L., Meetei, N. G. T., & Khanna, V. K. (2016). In vitro regeneration of Dalle khursani, an important chilli cultivar of Sikkim, using various explants. Agrotechnology, 5(1), 142.

    Google Scholar 

  6. Wall, M. M., Waddell, C. A., & Bosland, P. W. (2001). Variation in β-carotene and total carotenoid content in fruits of Capsicum. Hortscience, 36, 746–749.

    Google Scholar 

  7. Breithaupt, D. E., & Schwack, W. (2000). Determination of free and bound carotenoids in paprika (Capsicum annuum L.) by LC/MS. European Food Research and Technology, 211(1), 52–55.

    Article  Google Scholar 

  8. Cervantes-Paz, B., Yahia, E. M., Ornelas-Paz, J. J., Victoria-Campos, C. I., Junquera, I. V., Pérez-Martínez, J. D., & Escalante-Minakata, P. (2014). Antioxidant activity and content of chlorophylls and carotenoids in raw and heat-processed Jalapeño peppers at intermediate stages of ripening. Food Chemistry, 146, 188–196.

    Article  Google Scholar 

  9. Giuffrida, D., Dugo, P., Torre, G., Bignardi, C., Cavazza, A., Corradini, C., & Dugo, G. (2013). Characterization of 12 Capsicum varieties by evaluation of their carotenoid profile and pungency determination. Food Chemistry, 140(4), 794–802.

    Article  Google Scholar 

  10. Richins, R. D., Hernandez, L., Dungan, B., Hambly, S., Holguin, F. O., & O’Connell, M. A. (2010). A “green” extraction protocol to recover red pigments from hot Capsicum fruit. Hortscience, 45(7), 1084–1087.

    Google Scholar 

  11. Bielski, B. H., Richter, H. W., & Chan, P. C. (1975). Some properties of the ascorbate free radical. Annals of the New York Academy of Sciences, 258, 231–237.

    Article  Google Scholar 

  12. Vanderslice, J. T., Higgs, D. J., Hayes, J. M., & Block, G. (1990). Ascorbic acid and dehydroascorbic acid content of foods-as-eaten. Journal of Food Composition and Analysis, 3, 105–118.

    Article  Google Scholar 

  13. Hill, T. A., Ashrafi, H., Reyes-Chin-Wo, S., Yao, J., Stoffel, K., Maria-Jose, T., Kozik, A., Michelmore, R. W., & Deynze, A. V. (2013). Characterization of Capsicum annuum genetic diversity and population structure based on parallel polymorphism discovery with a 30K unigene Pepper GeneChip. PLoS One, 8(2), e56200. https://doi.org/10.1371/journal.pone.0056200.

    Article  Google Scholar 

  14. Diaz-Perez, J. C. (2010). Bell pepper (Capsicum annum L.) grown on plastic film mulches: effects on crop microenvironment, physiological attributes, and fruit yield. Hortscience, 45(8), 1196–1204.

    Google Scholar 

  15. Group, T.S.C. (1991). Treatment of painful diabetic neuropathy with topical capsaicin. A multicenter, double-blind, vehicle-controlled study. Archives of Internal Medicine, 151, 2225–2229.

    Article  Google Scholar 

  16. Spiller, F., Alves, M. K., Vieira, S. M., Carvalho, T. A., Leite, C. E., Lunardelli, A., Poloni, J. A., Cunha, F. Q., & de Oliveira, J. R. (2008). Anti-inflammatory effects of red pepper (Capsicum baccatum) on carrageenan- and antigen-induced inflammation. The Journal of Pharmacy and Pharmacology, 60, 473–478.

    Article  Google Scholar 

  17. Arimboor, R., Natarajan, R. B., Menon, K. R., Chandrasekhar, L. P., & Moorkoth, V. (2015). Red pepper (Capsicum annuum) carotenoids as a source of natural food colors: analysis and stability—a review. Journal of Food Science and Technology, 52(3), 1258–1271.

    Article  Google Scholar 

  18. Govindarajan, V. S., & Sathyanarayana, M. N. (1991). Capsicum—production, technology, chemistry, and quality. Part V. Impact on physiology, pharmacology, nutrition, and metabolism; structure, pungency, pain, and desensitization sequences. Critical Reviews in Food Science and Nutrition, 29, 435–474.

    Article  Google Scholar 

  19. Ramteke, C., Chakrabarti, T., Sarangi, B.K., Pandey, R.A. (2013). Synthesis of silver nanoparticles from the aqueous extract of leaves of Ocimum sanctum for enhanced antibacterial activity. Article ID 278925. https://doi.org/10.1155/2013/278925.

  20. Azwanida, N. N. (2015). A review on the extraction methods use in medicinal plants, principle, strength and limitation. Medicinal and Aromatic Plants, 4, 196. https://doi.org/10.4172/2167-0412.1000196.

    Google Scholar 

  21. Jamal, A. K., Yaacob, W. A., & Laily, B. D. (2008). A chemical study on Phyllanthus reticulatus. Journal of Physical Science, 19(2), 45–50.

    Google Scholar 

  22. Haque, M. A., Hassan, M. M., Das, A., Begum, B., Ali, M. Y., & Morshed, H. (2012). Phytochemical investigation of Vernonia cinerea (Family: Asteraceae). Journal of Applied Pharmaceutical Science, 02(06), 79–83.

    Google Scholar 

  23. Ezhilan, B. P., & Neelamegam, R. (2012). GC-MS analysis of phytocomponents in the ethanol extract of Polygonum chinense L. Pharmacognosy Research, 4(1), 11–14.

    Article  Google Scholar 

  24. Samrot, A. V., Sahiti, K., Raji, P., Rohan, B., Kumar, D., & Sharma, K. (2016). TLC bio-autography guided identification of antioxidant and antibacterial activity of Acacia senegal. Der Pharmacia Lettre, 8(9), 41–47.

    Google Scholar 

  25. Cimpoiu, D. C. J. (2006). Analysis of some natural antioxidants by thin-layer chromatography and high performance thin layer chromatography. Journal of Liquid Chromatography & Related Technologies, 7–8, 1125–1142.

    Article  Google Scholar 

  26. Takao, T., Kitatani, F., Watanabe, N., Yagi, A., & Sakata, K. (1994). A simple screening method for antioxidants and isolation of several antioxidants produced by marine bacteria from fish and shellfish. Bioscience, Biotechnology, and Biochemistry, 58, 1780–1783.

    Article  Google Scholar 

  27. Mehra, S., Dubey, A., Mathew, J., & Mehra, M. (2015). Comparative assessment of antimicrobial activity of five extract of P. longum and P. nigrum against B. brevis, P. thailandensis, E. aerogenes and B. anthracis. JAAS Journal, 3(1), 14–21.

    Google Scholar 

  28. Kouassi, K. C., Koffi-Nevry, R., Nanga, Z. Y., da Silva, T. J. A., Yao, K., Lathro, J. S., Tano, K., & Loukou, G. Y. (2010). Assessing the antibacterial activity and phytochemical screening of Capsicum varieties from Côte d’Ivoire. Food, 4(1), 27–32.

    Google Scholar 

  29. Balashanmugam, P., & Kalaichelvan, T. P. (2015). Biosynthesis characterization of silver nanoparticles using Cassia roxburghii DC. aqueous extract, and coated on cotton cloth for effective antibacterial activity. International Journal of Nanomedicine, 10(Suppl 1: Challenges in biomaterials research), 87–97.

    Article  Google Scholar 

  30. Benzie, F. F., & Strain, J. J. (1999). Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods in Enzymology, 299, 15–27.

    Article  Google Scholar 

  31. Kharat, S. N., & Mendhulkar, V. D. (2016). Synthesis, characterization and studies on antioxidant activity of silver nanoparticles using Elephantopus scaber leaf extract. Materials Science and Engineering C, 62, 719–724.

    Article  Google Scholar 

  32. Rajathi, K., & Sridhar, S. (2013). Green synthesized silver nanoparticles from the medicinal plant Wrightia tinctoria and its antimicrobial potential. International Journal of ChemTech Research, 5(4), 1707–1713.

    Google Scholar 

  33. Sriranjani, R., Srinithya, B., Vellingiri, V., Brindha, P., Anthony, S. P., Sivasubramanian, A., & Muthuraman, M. S. (2016). Silver nanoparticle synthesis using Clerodendrum phlomidis leaf extract and preliminary investigation of its antioxidant and anticancer activities. Journal of Molecular Liquids, 220, 926–930.

    Article  Google Scholar 

  34. Logeswari, P., Silambarasan, S., & Abraham, J. (2015). Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property. Journal of Saudi Chemical Society, 19(3), 311–317.

    Article  Google Scholar 

  35. Ali, Z.A., Yahya, R., Sekaran, S.D., Puteh, R. (2016). Green synthesis of silver nanoparticles using apple extract and its antibacterial properties. Advances in Materials Science and Engineering. Article ID 4102196. https://doi.org/10.1155/2016/4102196.

  36. Krishnan, R., Arumugam, V., & Vasaviah, S. K. (2015). The MIC and MBC of silver nanoparticles against Enterococcus faecalis—a facultative anaerobe. Journal of Nanomedicine & Nanotechnology, 6, 3.

    Google Scholar 

  37. Paredes, D., Ortiz, C., & Torres, R. (2014). Synthesis, characterization, and evaluation of antibacterial effect of Ag nanoparticles against Escherichia coli O157:H7 and methicillin resistant Staphylococcus aureus (MRSA). International Journal of Nanomedicine, 9, 1717–1729.

    Google Scholar 

  38. Koyyati, R., Nagati, V. B., Nalvothula, R., Merugu, R., Kudle, K. R., Marx, P., & Padigya, P. R. M. (2014). Antibacterial activity of silver nanoparticles synthesized using Amaranthus viridis twig extract. International Journal of Research in Pharmaceutical Sciences, 5(1), 32–39.

    Google Scholar 

  39. Maruthai, K., Vallayyachari, K., Ravibalan, T., Philip, S. A., Samrot, A. V., & Muthuraj, M. (2017). Antibacterial activity of the silver nanoparticles against Escherichia coli and Enterobacter sp. Progress in Bioscience and Bioengineering, 1(1), 29–35.

    Article  Google Scholar 

  40. Gunalana, S., Sivaraja, R., & Rajendran, V. (2012). Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Progress in Natural Science: Materials International, 22(6), 693–700.

    Article  Google Scholar 

  41. Gayathri, N., Gopalakrishnan, M., & Sekar, T. (2016). Phytochemical screening and antimicrobial activity of Capsicum chinense Jacq. International Journal of Advances in Pharmaceutics, 5(1), 12–20.

    Google Scholar 

  42. Abdelwahab, S. I., Abdul, A. B., Elhassan, M. M., Mohan, S., Ibrahim, M. Y., Mariod, A. A., AlHaj, N. A., & Abdullah, R. (2009). GC/MS determination of bioactive components and antibacterial properties of Goniothalamus umbrosus extracts. African Journal of Biotechnology, 8(14), 3336–3340.

    Google Scholar 

  43. Ibrahim, S. M., & Vaitheeswaran, M. (2016). GC-MS determination of bioactive compounds of Pongamia pinnata (L) Pierre (Fabaceae). World Journal of Pharmacy and Pharmaceutical Sciences, 5(5), 1046–1053.

    Google Scholar 

  44. Materska, M. (2015). Flavone C-glycosides from Capsicum annuum L.: relationships between antioxidant activity and lipophilicity. European Food Research and Technology, 240, 549–557.

    Article  Google Scholar 

  45. Lee, Y., Howard, L. R., & Villalón, B. (1995). Flavonoids and antioxidant activity of fresh pepper (Capsicum annuum) cultivars. Journal of Food Science, 60, 473–476.

    Article  Google Scholar 

  46. Benveniste, P. (2002). Sterol metabolism. In The Arabidopsis Book (pp. 1–31). American Society of Plant Biologists.

  47. Ling, W. H., & Jones, P. J. (1995). Dietary phytosterols: a review of metabolism, benefits and side effects. Life Sciences, 57, 195–206.

    Article  Google Scholar 

  48. Resendiz, S. H., Gombart, L., Cravatt, B. F., & Henriksen, S. J. (2001). Effect of oleamide on sleep and its relationship to blood pressure, body temperature and locomotor activity in rats. Experimental Neurology, 172(1), 235–243.

    Article  Google Scholar 

  49. Igwe, K. K., Madubuike, A. J., Otuokere, I. E., Amaku, F. J., & Ikenga, C. (2016). GC-MS analysis for structural identification and bioactive compounds in methanolic leaf extract of Mallotus oppositifolius. International Journal of Scientific Research and Management, 4(5), 4123–4129.

    Google Scholar 

  50. Ogunlesi, M., Okiei, W., Ofor, E., & Osibole, A. E. (2009). Analysis of the essential oil from the dried leaves of Euphorbia hirta Linn (Euphorbiaceae), a potential medication for asthma. African Journal of Biotechnology, 8, 7042–7050.

    Google Scholar 

  51. Sutha, S., Devi, K. V., & Mohan, V. R. (2011). GC-MS determination of bioactive components of Erythropalum scandens Bl., Bijdr. Journal of Applied Pharmaceutical Science, 01(09), 170–173.

    Google Scholar 

  52. Casuga, F. P., Castillo, A. L., & Corpuz, M. J. A. T. (2016). GC–MS analysis of bioactive compounds present in different extracts of an endemic plant Broussonetia luzonica (Blanco) (Moraceae) leaves. Asian Pacific Journal of Tropical Biomedicine, 6(11), 957–961.

    Article  Google Scholar 

  53. Asghar, S. F., Rehman, H. U., Choudahry, M. I., & Rahman, A. U. (2011). Gas chromatography-mass spectrometry (GC-MS) analysis of petroleum ether extract (oil) and bio-assays of crude extract of Iris germanica. International Journal of Genetics and Molecular Biology, 3(7), 95–100.

    Google Scholar 

  54. Yoshiyuki, M., Nobukazu, T., Hisaaki, Y., Takayoshi, K., Megumi, O., Hirokazu, S., Horie, T., Norikazu, A., Masakazu, Y., Akio, M., Shonen, Y., & Kengo, S. (1996). Fatty acids selectively inhibit eukaryotic DNA polymerase activities in vitro. Biochimica et Biophysica Acta (BBA)-Gene Structure and expression, 1308(3), 256–262.

    Article  Google Scholar 

  55. Jenecius, A. A., Uthayakumari, F., & Mohan, V. R. (2012). GC-MS determination of bioactive components of Sauropus bacciformis Blume (Euphorbiaceae). Journal of Current Chemical and Pharmaceutical Sciences, 2(4), 347–358.

    Google Scholar 

  56. Karim, A. M. P., Weam, A., Yousif, M., & Inas, O. (2017). GC-MS analysis and antimicrobial activity of Sudanese Brassica nigra L. (Brassicaceae) fixed oil. International Journal of Scientific Engineering and Applied Science, 3(1), 73–81.

    Google Scholar 

  57. Careaga, M., Fernández, E., Dorantes, L., Mota, L., Jaramillo, M. E., & Sanchez, H. H. (2003). Antibacterial activity of Capsicum extract against Salmonella typhimurium and Pseudomonas aeruginosa inoculated in raw beef meat. International Journal of Food Microbiology, 83, 331–335.

    Article  Google Scholar 

  58. Torres, M. J., Chávez, G. A., & Chávez, R. E. (1999). Antimicrobial properties of alkamides present in flavouring plants traditionally used in Mesoamerica: affinin and capsaicin. Journal of Ethnopharmacology, 64, 241–248.

    Article  Google Scholar 

  59. Shotorbani, N. Y., Jamei, R., & Heidari, R. (2013). Antioxidant activities of two sweet pepper Capsicum annuum L. varieties phenolic extracts and the effects of thermal treatment. Avicenna Journal of Phytomedicine, 3(1), 25–34.

    Google Scholar 

  60. Mendoza-Reséndez, R., Núñez, N. O., Barriga-Castro, E. D., & Luna, C. (2013). Synthesis of metallic silver nanoparticles and silver organometallic nanodisks mediated by extracts of Capsicum annuum var. aviculare (Piquin) fruits. RSC Advances, 3(43), 20765–20771.

    Article  Google Scholar 

  61. Singh, M., Mallick, A. K., Banerjee, M., & Kuma, R. (2016). Loss of outer membrane integrity in Gram-negative bacteria by silver nanoparticles loaded with Camellia sinensis leaf phytochemicals: plausible mechanism of bacterial cell disintegration. Bulletin of Materials Science, 39(37), 1871–1878.

    Article  Google Scholar 

  62. Liu, Y. S., Chang, Y. C., & Chen, H. H. (2018). Silver nanoparticle biosynthesis by using phenolic acids in rice husk extract as reducing agents and dispersants. Journal of Food and Drug Analysis, 26(2), 649–656.

    Article  Google Scholar 

  63. Vidhu, V. K., Aromal, S. A., & Philip, D. (2011). Green synthesis of silver nanoparticles using Macrotyloma uniflorum. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 83, 392–397.

    Article  Google Scholar 

  64. Agarwal, P., Bairwa, V. K., Kachhwaha, S., & Kothari, S. L. (2014). Green synthesis of silver nanoparticles using callus extract of Capsicum annuum L. and their activity against microorganisms. International Journal of Nanotechnology and Application, 4(5), 1–8.

    Google Scholar 

  65. Dakal, T. C., Kumar, A., Majumdar, R. S., & Yadav, V. (2016). Mechanistic basis of antimicrobial actions of silver nanoparticles. Frontiers in Microbiology, 7, 1831. https://doi.org/10.3389/fmicb.2016.01831.

    Article  Google Scholar 

  66. Pal, S., Tak, Y. K., & Song, J. M. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Applied and Environmental Microbiology, 27, 1712–1720.

    Article  Google Scholar 

  67. Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ram’ırez, J. T., & Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10), 2346–2353.

    Article  Google Scholar 

  68. Ghosh, B., & Ramamoorthy, D. (2010). Effects of silver nanoparticles on Escherichia coli and its implications. International Journal of Chemical Sciences, 8(5), S31–S40.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antony V. Samrot.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 960 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samrot, A.V., Shobana, N. & Jenna, R. Antibacterial and Antioxidant Activity of Different Staged Ripened Fruit of Capsicum annuum and Its Green Synthesized Silver Nanoparticles. BioNanoSci. 8, 632–646 (2018). https://doi.org/10.1007/s12668-018-0521-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-018-0521-8

Keywords

Navigation