Skip to main content

Advertisement

Log in

Stratifying Heterogeneous Dimension of Neurodegenerative Diseases: Intervention for Stipulating Epigenetic Factors to Combat Oxidative Stress in Human Brain

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Neurodegenerative diseases affect the neurons of the human brain and decline the neural activities causing neurocognitive dysfunctions and brain and behavioral disorders. An intensive immunotherapy is used to alter the course of multiple sclerosis, a common form of neurodegeneration, by controlling oxidative stress, recovering mitochondrial injury, and rehabilitating channelopathy dysfunctions. However, little is known about how the epigenetic factors can regulate atrophy genesis at hippocampal region, which prevents neurodegeneration. Further, traumatic brain injury leads to neurodegeneration. However, the onset of the later is not yet successfully monitored. Simultaneously, discrimination between neurodegeneration due to ageing and traumatic brain injury has not been addressed in the existing literature. Therefore, we present different forms of traumatic brain injury that trigger neurotoxicity, leading to the classification of onset stage of neurodegenerative pathways. We discuss how the immune system orchestrates changes in neurogenesis in presence of physiological stimuli. In our view, the epigenetic mode of treatment successfully intervenes all forms of neurodegenerative disease in both ageing and traumatic condition. Here, we establish a cross talk between epigenetic factors and neural immunology to balance oxidative stress at hippocampal regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mattson, M. P., & Camandola, S. (2001). NF-kB in neuronal plasticity and neurodegenerative disorders. The Journal of Clinical Investigation, 107(3), 247–254.

    Article  Google Scholar 

  2. Braun, U., Muldoon, S. F., & Bassett, D. S. (2015). On human brain networks in health and disease. eLS.

  3. Achard, S., Salvador, R., Whitcher, B., Suckling, J., Bullmore, E. D. (2006). A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. The Journal of Neuroscience, 26(1), 63–72.

    Article  Google Scholar 

  4. Salvador, R., Suckling, J., Schwarzbauer, C., Bullmore, E. (2005). Undirected graphs of frequency-dependent functional connectivity in whole brain networks. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 360(1457), 937–946.

    Article  Google Scholar 

  5. Catani, M., & Mesulam, M. (2008). What is a disconnection syndrome? Cortex, 44(8), 911–913.

    Article  Google Scholar 

  6. Bassett, D. S., Bullmore, E., Verchinski, B. A., Mattay, V. S., Weinberger, D. R., Meyer-Lindenberg, A. (2008). Hierarchical organization of human cortical networks in health and schizophrenia. The Journal of Neuroscience, 28(37), 9239–9248.

    Article  Google Scholar 

  7. Stam, C. J., De Haan, W., Daffertshofer, A. B. F. J., Jones, B. F., Manshanden, I., Van Walsum, A. V. C., … & Berendse, H. W. (2009). Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer’s disease. Brain, 132(1), 213–224.

  8. Buckner, R. L., Sepulcre, J., Talukdar, T., Krienen, F. M., Liu, H., Hedden, T., … & Johnson, K. A. (2009). Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. The Journal of Neuroscience, 29(6), 1860–1873.

  9. Morgan, B., Ezeriņa, D., Amoako, T. N., Riemer, J., Seedorf, M., Dick, T. P. (2013). Multiple glutathione disulfide removal pathways mediate cytosolic redox homeostasis. Nature Chemical Biology, 9(2), 119–125.

    Article  Google Scholar 

  10. Migliore, L., & Coppedè, F. (2009). Genetics, environmental factors and the emerging role of epigenetics in neurodegenerative diseases. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 667(1), 82–97.

    Article  Google Scholar 

  11. Perera, F., & Herbstman, J. (2011). Prenatal environmental exposures, epigenetics, and disease. Reproductive Toxicology, 31(3), 363–373.

    Article  Google Scholar 

  12. Coppedè, F. (2012). Genetics and epigenetics of Parkinson’s disease. The Scientific World Journal, 2012, 489830.

    Article  Google Scholar 

  13. Kivipelto, M., & Solomon, A. (2006). Cholesterol as a risk factor for Alzheimer’s disease—epidemiological evidence. Acta Neurologica Scandinavica, 114(s185), 50–57.

    Article  Google Scholar 

  14. Solfrizzi, V., Capurso, C., D’Introno, A., Colacicco, A. M., Santamato, A., Ranieri, M., … & Panza, F. (2008). Lifestyle-related factors in predementia and dementia syndromes. Expert Review of Neurotherapeutics, 8(1), 133–158.

  15. Smith, M. A., Petot, G. J., Perry, G. (1999). Diet and oxidative stress: a novel synthesis of epidemiological data on Alzheimer’s disease. Journal of Alzheimer’s Disease, 1(4, 5), 203–206.

    Google Scholar 

  16. Muddasir Qureshi, M., Hayden, D., Urbinelli, L., Ferrante, K., Newhall, K., Myers, D., … & Cudkowicz, M. E. (2006). Analysis of factors that modify susceptibility and rate of progression in amyotrophic lateral sclerosis (ALS). Amyotrophic Lateral Sclerosis, 7(3), 173–182.

  17. Govoni, V., Granieri, E., Fallica, E., Casetta, I. (2005). Amyotrophic lateral sclerosis, rural environment and agricultural work in the Local Health District of Ferrara, Italy, in the years 1964–1998. Journal of Neurology, 252(11), 1322–1327.

    Article  Google Scholar 

  18. Burgener, S. C., Buettner, L., Buckwalter, K. C., Beattie, E., Bossen, A. L., Fick, D. M., … & Schreiner, A. (2008). Evidence supporting nutritional interventions for persons in early stage Alzheimer’s disease (AD). The Journal of Nutrition Health and Aging, 12(1), 18–21.

  19. Barberger-Gateau, P., Raffaitin, C., Letenneur, L., Berr, C., Tzourio, C., Dartigues, J. F., et al. (2007). Dietary patterns and risk of dementia the three-city cohort study. Neurology, 69(20), 1921–1930.

    Article  Google Scholar 

  20. Santibanez, M., Bolumar, F., Garcia, A. M. (2007). Occupational risk factors in Alzheimer’s disease: a review assessing quality of published epidemiological studies. Occupational and Environmental Medicine, 64(11), 723–732.

    Article  Google Scholar 

  21. Hu, G., Bidel, S., Jousilahti, P., Antikainen, R., Tuomilehto, J. (2007). Coffee and tea consumption and the risk of Parkinson’s disease. Movement Disorders, 22(15), 2242–2248.

    Article  Google Scholar 

  22. Nelson, P. T., Trojanowski, J. Q., Abner, E. L., Al-Janabi, O. M., Jicha, G. A., Schmitt, F. A., … & Neltner, J. H. (2016). “New old pathologies”: AD, PART, and cerebral age-related TDP-43 with sclerosis (CARTS). Journal of Neuropathology & Experimental Neurology, 75(6), 482–498.

  23. F. Deak, W. M. Freeman, Z. Ungvari, A. Csiszar, and W.E. Sonntag. Recent Developments in understanding brain aging: implications for Alzheimer’s disease and vascular cognitive impairment. Journals of Gerontology: Biological Sciences,(2015) 1–8. 10.1093/gerona/glv206

  24. Falahati, F., Ferreira, D., Soininen, H., Mecocci, P., Vellas, B., Tsolaki, M., … & Simmons, A. (2016). The effect of age correction on multivariate classification in Alzheimer’s disease, with a focus on the characteristics of incorrectly and correctly classified subjects. Brain Topography, 29(2), 296–307.

  25. M. Richard, D. A. H. Ransohoff, and C. F. Lucchinetti. (2015). Multiple sclerosis—a quiet revolution. Nature Review Neurology. 10.1038/nrneurol.2015.14

  26. Freiherr, J., Hallschmid, M., Frey II, W. H., Brünner, Y. F., Chapman, C. D., Hölscher, C., … & Benedict, C. (2013). Intranasal insulin as a treatment for Alzheimer’s disease: a review of basic research and clinical evidence. CNS Drugs, 27(7), 505–514.

  27. Hua, X., Hibar, D. P., Lee, S., Toga, A. W., Jack, C. R., Weiner, M. W., et al. (2010). Sex and age differences in atrophic rates: an ADNI study with n = 1368 MRI scans. Neurobiology of Aging, 31(8), 1463–1480.

    Article  Google Scholar 

  28. Helle, S., Ringen, P. A., Melle, I., Larsen, T. K., Gjestad, R., Johnsen, E., … & ten Velden Hegelstad, W. (2016). Cannabis use is associated with 3 years earlier onset of schizophrenia spectrum disorder in a naturalistic, multi-site sample (N=1119). Schizophrenia Research, 170(1), 217–221.

  29. Phillips, J. T., & Fox, R. J. (2013). BG-12 in multiple sclerosis. In Seminars in neurology (Vol. 33, No. 01, pp. 056–065). Stuttgart: Thieme Medical Publishers.

    Google Scholar 

  30. van Horssen, J., Drexhage, J. A., Flor, T., Gerritsen, W., van der Valk, P., de Vries, H. E. (2010). Nrf2 and DJ1 are consistently upregulated in inflammatory multiple sclerosis lesions. Free Radical Biology and Medicine, 49(8), 1283–1289.

    Article  Google Scholar 

  31. Wang, Q., Chuikov, S., Taitano, S., Wu, Q., Rastogi, A., Tuck, S. J., … & Mao-Draayer, Y. (2015). Dimethyl fumarate protects neural stem/progenitor cells and neurons from oxidative damage through Nrf2-ERK1/2 MAPK pathway. International Journal of Molecular Sciences, 16(6), 13885–13907.

  32. Quinti, L., Casale, M., Moniot, S., Pais, T. F., Van Kanegan, M. J., Kaltenbach, L. S., … & Meisel, L. (2016). SIRT2-and NRF2-targeting thiazole-containing compound with therapeutic activity in Huntington’s disease models. Cell Chemical Biology, 23(7), 849–861.

  33. Liu, L., Arun, A., Ellis, L., Peritore, C., Donmez, G. (2013). Sirtuin 2 (SIRT2) enhances 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced nigrostriatal damage via deacetylating forkhead box O3a (Foxo3a) and activating Bim protein. Journal of Biological Chemistry, 288(20), 14672–14672.

    Article  Google Scholar 

  34. North, B. J., Marshall, B. L., Borra, M. T., Denu, J. M., Verdin, E. (2003). The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Molecular Cell, 11(2), 437–444.

    Article  Google Scholar 

  35. Luthi-Carter, R., Taylor, D. M., Pallos, J., Lambert, E., Amore, A., Parker, A., … & Kuhn, A. (2010). SIRT2 inhibition achieves neuroprotection by decreasing sterol biosynthesis. Proceedings of the National Academy of Sciences, 107(17), 7927–7932.

  36. Maxwell, M. M., Tomkinson, E. M., Nobles, J., Wizeman, J. W., Amore, A. M., Quinti, L., & Kazantsev, A. G. (2011). The Sirtuin 2 microtubule deacetylase is an abundant neuronal protein that accumulates in the aging CNS. Human Molecular Genetics, ddr326.

  37. Zhang, Y., Talalay, P., Cho, C. G., Posner, G. H. (1992). A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proceedings of the National Academy of Sciences, 89(6), 2399–2403.

    Article  Google Scholar 

  38. Johnson, J. A., Johnson, D. A., Kraft, A. D., Calkins, M. J., Jakel, R. J., Vargas, M. R., et al. (2008). The Nrf2–ARE pathway. Annals of the New York Academy of Sciences, 1147(1), 61–69.

    Article  Google Scholar 

  39. Joshi, G., & Johnson, A. J. (2012). The Nrf2-ARE pathway: a valuable therapeutic target for the treatment of neurodegenerative diseases. Recent Patents on CNS Drug Discovery, 7(3), 218–229.

    Article  Google Scholar 

  40. Tufekci, K. U., Civi Bayin, E., Genc, S., Genc, K. (2011). The Nrf2/ARE pathway: a promising target to counteract mitochondrial dysfunction in Parkinson’s disease. Parkinson’s Disease, 2011.

  41. van Muiswinkel, F. L., & Kuiperij, H. B. (2005). The Nrf2-ARE signalling pathway: promising drug target to combat oxidative stress in neurodegenerative disorders. Current Drug Targets-CNS & Neurological Disorders, 4(3), 267–281.

    Article  Google Scholar 

  42. Xiong, W., Garfinkel, A. E. M., Li, Y., Benowitz, L. I., Cepko, C. L. (2015). NRF2 promotes neuronal survival in neurodegeneration and acute nerve damage. The Journal of Clinical Investigation, 125(4), 1433.

    Article  Google Scholar 

  43. Tsvetkov, A. S., Arrasate, M., Barmada, S., Ando, D. M., Sharma, P., Shaby, B. A., et al. (2013). Proteostasis of polyglutamine varies among neurons and predicts neurodegeneration. Nature Chemical Biology, 9(9), 586–592.

    Article  Google Scholar 

  44. Buendia, I., Michalska, P., Navarro, E., Gameiro, I., Egea, J., León, R. (2016). Nrf2–ARE pathway: an emerging target against oxidative stress and neuroinflammation in neurodegenerative diseases. Pharmacology & Therapeutics, 157, 84–104.

    Article  Google Scholar 

  45. Chinta, S. J., Mallajosyula, J. K., Rane, A., Andersen, J. K. (2010). Mitochondrial alpha-synuclein accumulation impairs complex I function in dopaminergic neurons and results in increased mitophagy in vivo. Neuroscience Letters, 486(3), 235–239.

    Article  Google Scholar 

  46. Thimmulappa, R. K., Mai, K. H., Srisuma, S., Kensler, T. W., Yamamoto, M., Biswal, S. (2002). Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Research, 62(18), 5196–5203.

    Google Scholar 

  47. Niture, S. K., Jain, A. K., Jaiswal, A. K. (2009). Antioxidant-induced modification of INrf2 cysteine 151 and PKC-delta-mediated phosphorylation of Nrf2 serine 40 are both required for stabilization and nuclear translocation of Nrf2 and increased drug resistance. Journal of Cell Science, 122(24), 4452–4464.

    Article  Google Scholar 

  48. Kwak, M. K., Wakabayashi, N., Greenlaw, J. L., Yamamoto, M., Kensler, T. W. (2003). Antioxidants enhance mammalian proteasome expression through the Keap1-Nrf2 signaling pathway. Molecular and Cellular Biology, 23(23), 8786–8794.

    Article  Google Scholar 

  49. Kapeta, S., Chondrogianni, N., Gonos, E. S. (2010). Nuclear erythroid factor 2-mediated proteasome activation delays senescence in human fibroblasts. Journal of Biological Chemistry, 285(11), 8171–8184.

    Article  Google Scholar 

  50. Mattson, S. N., Crocker, N., Nguyen, T. T. (2011). Fetal alcohol spectrum disorders: neuropsychological and behavioral features. Neuropsychology Review, 21(2), 81–101.

    Article  Google Scholar 

  51. Migliore, L., & Coppedè, F. (2009). Environmental-induced oxidative stress in neurodegenerative disorders and aging. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 674(1), 73–84.

    Article  Google Scholar 

  52. Weydt, P., Soyal, S. M., Landwehrmeyer, G. B., & Patsch, W. (2014). A single nucleotide polymorphism in the coding region of PGC-1α is a male-specific modifier of Huntington disease age-at-onset in a large European cohort. BMC Neurology, 14(1)

  53. Johnson, V. E., Stewart, J. E., Begbie, F. D., Trojanowski, J. Q., Smith, D. H., Stewart, W. (2013). Inflammation and white matter degeneration persist for years after a single traumatic brain injury. Brain, 136(1), 28–42.

    Article  Google Scholar 

  54. Caspersen, C. J., Thomas, G. D., Boseman, L. A., et al. (2012). Aging, diabetes, and the public health system in the United States. American Journal of Public Health, 102, 1482–1497.

    Article  Google Scholar 

  55. Falahati, H., Pelham-Webb, B., Blythe, S., Wieschaus, E. (2016). Nucleation by rRNA dictates the precision of nucleolus assembly. Current Biology, 26(3), 277–285.

    Article  Google Scholar 

  56. Murray, P. J., & Wynn, T. A. (2011). Protective and pathogenic functions of macrophage subsets. Nature Reviews Immunology, 11(11), 723–737.

    Article  Google Scholar 

  57. Relja, B., Omid, N., Wagner, N., Mörs, K., Werner, I., Juengel, E., … & Marzi, I. (2016). Ethanol, ethyl and sodium pyruvate decrease the inflammatory responses of human lung epithelial cells via Akt and NF-kB in vitro but have a low impact on hepatocellular cells. International Journal of Molecular Medicine, 37(2), 517–525.

  58. Fotuhi, M., Do, D., Jack, C. (2012). Modifiable factors that alter the size of the hippocampus with ageing. Nature Reviews Neurology, 8(4), 189–202.

    Google Scholar 

  59. Honeybul, S., & Ho, K. M. (2011). Long-term complications of decompressive craniectomy for head injury. Journal of Neurotrauma, 28(6), 929–935.

    Article  Google Scholar 

  60. Hwang, L., Choi, I. Y., Kim, S. E., Ko, I. G., Shin, M. S., Kim, C. J., … & Yi, J. W. (2013). Dexmedetomidine ameliorates intracerebral hemorrhage-induced memory impairment by inhibiting apoptosis and enhancing brain-derived neurotrophic factor expression in the rat hippocampus. International Journal of Molecular Medicine, 31(5), 1047–1056.

  61. Ling, G. S., & Ecklund, J. M. (2011). Traumatic brain injury in modern war. Current Opinion in Anaesthesiology, 24, 124–130.

    Article  Google Scholar 

  62. Signoretti, S., Di Pietro, V., Vagnozzi, R., Lazzarino, G., Amorini, A. M., Belli, A., … & Tavazzi, B. (2010). Transient alterations of creatine, creatine phosphate, N-acetylaspartate and high-energy phosphates after mild traumatic brain injury in the rat. Molecular and Cellular Biochemistry, 333(1–2), 269–277.

  63. Maas, A. I., Stocchetti, N., Bullock, R. (2008). Moderate and severe traumatic brain injury in adults. The Lancet Neurology, 7(8), 728–741.

    Article  Google Scholar 

  64. Mortimer, J. A., Van Duijn, C. M., Chandra, V., Fratiglioni, L., Graves, A. B., Heyman, A., … & Shalat, S. L. (1991). Head trauma as a risk factor for Alzheimer’s disease: a collaborative re-analysis of case–control studies. International Journal of Epidemiology, 20(Supplement 2), S28-S35.

  65. Goldman, S. M., Tanner, C. M., Oakes, D., Bhudhikanok, G. S., Gupta, A., Langston, J. W. (2006). Head injury and Parkinson’s disease risk in twins. Annals of Neurology, 60(1), 65–72.

    Article  Google Scholar 

  66. Chen, H., Richard, M., Sandler, D. P., Umbach, D. M., Kamel, F. (2007). Head injury and amyotrophic lateral sclerosis. American Journal of Epidemiology, 166(7), 810–816.

    Article  Google Scholar 

  67. Gavett, B. E., Stern, R. A., Cantu, R. C., Nowinski, C. J., McKee, A. C. (2010). Mild traumatic brain injury: a risk factor for neurodegeneration. Alzheimer’s Research & Therapy, 2(3), 1.

    Google Scholar 

  68. Chauhan, N. B. (2014). Chronic neurodegenerative consequences of traumatic brain injury. Restorative Neurology and Neuroscience, 32(2), 337–365.

    Google Scholar 

  69. Sharp, D. J., Scott, G., Leech, R. (2014). Network dysfunction after traumatic brain injury. Nature Reviews Neurology, 10(3), 156.

    Article  Google Scholar 

  70. Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C. J., Wedeen, V. J., et al. (2008). Mapping the structural core of human cerebral cortex. PLoS Biology, 6, 159.

    Article  Google Scholar 

  71. Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10(3), 186–198.

    Article  Google Scholar 

  72. Kinnunen, K. M., Greenwood, R., Powell, J. H., Leech, R., Hawkins, P. C., Bonnelle, V., et al. (2011). White matter damage and cognitive impairment after traumatic brain injury. Brain, 134(2), 449–463.

    Article  Google Scholar 

  73. Bonnelle, V., Leech, R., Kinnunen, K. M., Ham, T. E., Beckmann, C. F., De Boissezon, X., … & Sharp, D. J. (2011). Default mode network connectivity predicts sustained attention deficits after traumatic brain injury. The Journal of Neuroscience, 31(38), 13442–13451.

  74. Bonnelle, V., Ham, T. E., Leech, R., Kinnunen, K. M., Mehta, M. A., Greenwood, R. J., et al. (2012). Salience network integrity predicts default mode network function after traumatic brain injury. Proceedings of the National Academy of Sciences, 109(12), 4690–4695.

    Article  Google Scholar 

  75. Mayeux, R., Ottman, R., Maestre, G., Ngai, C., Tang, M. X., Ginsberg, H., … & Shelanski, M. (1995). Synergistic effects of traumatic head injury and apolipoprotein-epsilon 4 in patients with Alzheimer’s disease. Neurology, 45(3), 555–557.

  76. Lye, T. C., & Shores, E. A. (2000). Traumatic brain injury as a risk factor for Alzheimer’s disease: a review. Neuropsychology Review, 10(2), 115–129.

    Article  Google Scholar 

  77. Smith, S. M., et al. (2013). Functional connectomics from resting-state fMRI. Trends in Cognitive Science, 17, 666–682.

    Article  Google Scholar 

  78. McKee, A. C., Stein, T. D., Nowinski, C. J., Stern, R. A., Daneshvar, D. H., Alvarez, V. E., … & Riley, D. O. (2013). The spectrum of disease in chronic traumatic encephalopathy. Brain, 136(1), 43–64.

  79. Polymenidou, M., & Cleveland, D. W. (2013). Prion-like spread of protein aggregates in neurodegeneration. The Journal of Experimental Medicine, 209, 889–893.

    Article  Google Scholar 

  80. de Calignon, A., Polydoro, M., Suárez-Calvet, M., William, C., Adamowicz, D. H., Kopeikina, K. J., … & Spires-Jones, T. L. (2012). Propagation of tau pathology in a model of early Alzheimer’s disease. Neuron, 73(4), 685–697.

  81. Ramlackhansingh, A. F., Brooks, D. J., Greenwood, R. J., Bose, S. K., Turkheimer, F. E., Kinnunen, K. M., et al. (2011). Inflammation after trauma: microglial activation and traumatic brain injury. Annals of Neurology, 70(3), 374–383.

    Article  Google Scholar 

  82. Shitaka, Y., Tran, H. T., Bennett, R. E., Sanchez, L., Levy, M. A., Dikranian, K., et al. (2011). Repetitive closed-skull traumatic brain injury in mice causes persistent multifocal axonal injury and microglial reactivity. Journal of Neuropathology & Experimental Neurology, 70(7), 551–567.

    Article  Google Scholar 

  83. Johnson, V. E., Stewart, W., Smith, D. H. (2013). Axonal pathology in traumatic brain injury. Experimental Neurology, 246, 35–43.

    Article  Google Scholar 

  84. Gentleman, S. M. (2013). Review: microglia in protein aggregation disorders: friend or foe? Neuropathology and Applied Neurobiology, 39, 45–50.

    Article  Google Scholar 

  85. Shively, S. B., & Perl, D. P. (2012). Traumatic brain injury, shell shock, and posttraumatic stress disorder in the military—past, present, and future. The Journal of Head Trauma Rehabilitation, 27(3), 234–239.

    Article  Google Scholar 

  86. Jafari, S., Etminan, M., Aminzadeh, F., Samii, A. (2013). Head injury and risk of Parkinson disease: a systematic review and meta-analysis. Movement Disorders, 28(9), 1222–1229.

    Article  Google Scholar 

  87. Lehman, E. J., Hein, M. J., Baron, S. L., Gersic, C. M. (2012). Neurodegenerative causes of death among retired National Football League players. Neurology, 79(19), 1970–1974.

    Article  Google Scholar 

  88. Guskiewicz, K. M., Marshall, S. W., Bailes, J., McCrea, M., Cantu, R. C., Randolph, C., et al. (2005). Association between recurrent concussion and late-life cognitive impairment in retired professional football players. Neurosurgery, 57(4), 719–726.

    Article  Google Scholar 

  89. Sundman, M. H., Hall, E. E., & Chen, N. K. (2014). Examining the relationship between head trauma and neurodegenerative disease: a review of epidemiology, pathology and neuroimaging techniques. Journal of Alzheimer’s Disease & Parkinsonism, 4.

  90. Smith, D. H., Uryu, K., Saatman, K. E., Trojanowski, J. Q., Mcintosh, T. K. (2003). Protein accumulation in traumatic brain injury. Neuromolecular Medicine, 4(1–2), 59–72.

    Article  Google Scholar 

  91. Uryu, K., Chen, X. H., Martinez, D., Browne, K. D., Johnson, V. E., Graham, D. I., … & Smith, D. H. (2007). Multiple proteins implicated in neurodegenerative diseases accumulate in axons after brain trauma in humans. Experimental Neurology, 208(2), 185–192.

  92. Mondello, S., Buki, A., Italiano, D., Jeromin, A. (2013). α-Synuclein in CSF of patients with severe traumatic brain injury. Neurology, 80(18), 1662–1668.

    Article  Google Scholar 

  93. Leiter, Odette, Gerd Kempermann, and Tara L. Walker. “A common language: how neuroimmunological cross talk regulates adult hippocampal neurogenesis.” Stem Cells International. 2016 (2016).

  94. Filippov, V., et al. (2003). Subpopulation of nestin-expressing progenitor cells in the adult murine hippocampus shows electrophysiological and morphological characteristics of astrocytes. Molecular and Cellular Neuroscience, 23(3), 373–382.

    Article  Google Scholar 

  95. Ehret, F., Vogler, S., Kempermann, G. (2015). A co-culture model of the hippocampal neurogenic niche reveals differential effects of astrocytes, endothelial cells and pericytes on proliferation and differentiation of adult murine precursor cells. Stem Cell Research, 15(3), 514–521.

    Article  Google Scholar 

  96. Cacabelos, R., et al. (2016). Neuroimmune crosstalk in CNS disorders: the histamine connection. Current Pharmaceutical Design, 22(7), 819–848.

    Article  Google Scholar 

  97. Jang, S. S., & Chung, H. J. (2016). Emerging link between Alzheimer’s disease and homeostatic synaptic plasticity. Neural Plasticity, 2016.

  98. Ellrichmann, G., Reick, C., Saft, C., Linker, R. A. (2013). The role of the immune system in Huntington’s disease. Clinical and Developmental Immunology, 2013, 541259.

    Article  Google Scholar 

  99. MacDonald, M. E., Ambrose, C. M., Duyao, M. P., Myers, R. H., Lin, C., Srinidhi, L., … & MacFarlane, H. (1993). A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell, 72(6), 971–983.

  100. Buraczynska, M. J., Van Keuren, M. L., Buraczynska, K. M., Chang, Y. S., Crombez, E., Kurnit, D. M. (1995). Construction of human embryonic cDNA libraries: HD, PKD1 and BRCA1 are transcribed widely during embryogenesis. Cytogenetic and Genome Research, 71(2), 197–202.

    Article  Google Scholar 

  101. Andrew, S. E., Goldberg, Y. P., Kremer, B., Telenius, H., Theilmann, J., Adam, S., … & Graham, R. K. (1993). The relationship between trinucleotide (CAG) repeat length. Nature Genetics, 4.

  102. Möller, T. (2010). Neuroinflammation in Huntington’s disease. Journal of Neural Transmission, 117(8), 1001–1008.

    Article  Google Scholar 

  103. Björkqvist, M., Wild, E. J., Thiele, J., Silvestroni, A., Andre, R., Lahiri, N., … & Magnusson, A. (2008). A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington’s disease. The Journal of Experimental Medicine, 205(8), 1869–1877.

  104. Bossy-Wetzel, E., Petrilli, A., Knott, A. B. (2008). Mutant huntingtin and mitochondrial dysfunction. Trends in Neurosciences, 31(12), 609–616.

    Article  Google Scholar 

  105. Salminen, A., Ojala, J., Kaarniranta, K., Kauppinen, A. (2012). Mitochondrial dysfunction and oxidative stress activate inflammasomes: impact on the aging process and age-related diseases. Cellular and Molecular Life Sciences, 69(18), 2999–3013.

    Article  Google Scholar 

  106. Quintana, A., & Hoth, M. (2012). Mitochondrial dynamics and their impact on T cell function. Cell Calcium, 52(1), 57–63.

    Article  Google Scholar 

  107. Squitieri, F., Cannella, M., Sgarbi, G., Maglione, V., Falleni, A., Lenzi, P., … & Russo, M. A. (2006). Severe ultrastructural mitochondrial changes in lymphoblasts homozygous for Huntington disease mutation. Mechanisms of Ageing and Development, 127(2), 217–220.

  108. Bellavance, M. A., & Rivest, S. (2012). The neuroendocrine control of the innate immune system in health and brain diseases. Immunological Reviews, 248(1), 36–55.

    Article  Google Scholar 

  109. Biffi, A., De Palma, M., Quattrini, A., Del Carro, U., Amadio, S., Visigalli, I., … & Bordignon, C. (2004). Correction of metachromatic leukodystrophy in the mouse model by transplantation of genetically modified hematopoietic stem cells. The Journal of Clinical Investigation, 113(8), 1118–1129.

  110. Johnson, F. B., Sinclair, D. A., Guarente, L. (1999). Molecular biology of aging. Cell, 96(2), 291–302.

    Article  Google Scholar 

  111. Aalami, O. O., Fang, T. D., Song, H. M., Nacamuli, R. P. (2003). Physiological features of aging persons. Archives of Surgery, 138(10), 1068–1076.

    Article  Google Scholar 

  112. Huidobro, C., Fernandez, A. F., Fraga, M. F. (2013). Aging epigenetics: causes and consequences. Molecular Aspects of Medicine, 34(4), 765–781.

    Article  Google Scholar 

  113. Sato, F., Tsuchiya, S., Meltzer, S. J., Shimizu, K. (2011). MicroRNAs and epigenetics. FEBS Journal, 278(10), 1598–1609.

    Article  Google Scholar 

  114. Esteller, M. (2008). Epigenetics in cancer. New England Journal of Medicine, 358(11), 1148–1159.

    Article  Google Scholar 

  115. Melo, S. A., Ropero, S., Moutinho, C., Aaltonen, L. A., Yamamoto, H., Calin, G. A., … & Ferreira, B. (2009). A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function. Nature Genetics, 41(3), 365–370.

  116. Melo, S., Villanueva, A., Moutinho, C., Davalos, V., Spizzo, R., Ivan, C., … & Carmona, J. (2011). Small molecule enoxacin is a cancer-specific growth inhibitor that acts by enhancing TAR RNA-binding protein 2-mediated microRNA processing. Proceedings of the National Academy of Sciences, 108(11), 4394–4399.

  117. Kato, M., Chen, X., Inukai, S., Zhao, H., Slack, F. J. (2011). Age-associated changes in expression of small, noncoding RNAs, including microRNAs, in C. elegans. RNA, 17(10), 1804–1820.

    Article  Google Scholar 

  118. Smith-Vikos, T., & Slack, F. J. (2012). MicroRNAs and their roles in aging. Journal of Cell Science, 125(1), 7–17.

    Article  Google Scholar 

  119. Esteller, M. (2011). Non-coding RNAs in human disease. Nature Reviews Genetics, 12(12), 861–874.

    Article  Google Scholar 

  120. Fraga, M. F. (2009). Genetic and epigenetic regulation of aging. Current Opinion in Immunology, 21(4), 446–453.

    Article  MathSciNet  Google Scholar 

  121. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674.

    Article  Google Scholar 

  122. Haghighi, F., Ge, Y., Chen, S., Xin, Y., Umali, M. U., De Gasperi, R., … & Elder, G. A. (2015). Neuronal DNA methylation profiling of blast-related traumatic brain injury. Journal of Neurotrauma, 32(16), 1200–1209

  123. Moore, L. D., Le, T., Fan, G. (2013). DNA methylation and its basic function. Neuropsychopharmacology, 38(1), 23–38.

    Article  Google Scholar 

  124. Lundberg, J., Karimi, M., von Gertten, C., Holmin, S., Ekström, T. J., Sandberg-Nordqvist, A. C. (2009). Traumatic brain injury induces relocalization of DNA-methyltransferase 1. Neuroscience Letters, 457(1), 8–11.

    Article  Google Scholar 

  125. Bryan, C. J. (2013). Repetitive traumatic brain injury (or concussion) increases severity of sleep disturbance among deployed military personnel. Sleep, 36(6), 941–946.

    Google Scholar 

  126. Zeitzer, J. M., Friedman, L., O’Hara, R. (2009). Insomnia in the context of traumatic brain injury. Journal of Rehabilitation Research and Development, 46(6), 827–836.

    Article  Google Scholar 

  127. Macera, C. A., Aralis, H. J., Rauh, M. J., Macgregor, A. J. (2013). Do sleep problems mediate the relationship between traumatic brain injury and development of mental health symptoms after deployment? Sleep, 36(1), 83.

    Google Scholar 

  128. Chandok, G. S., Patel, M. P., Mirkin, S. M., Krasilnikova, M. M. (2012). Effects of Friedreich’s ataxia GAA repeats on DNA replication in mammalian cells. Nucleic Acids Research, 40(9), 3964–3974.

    Article  Google Scholar 

  129. Sandi, C., Al-Mahdawi, S., Pook, M. A. (2013). Epigenetics in Friedreich’s ataxia: challenges and opportunities for therapy. Genetics research international, 2013, 852080.

    Article  Google Scholar 

  130. Sakamoto, N., Ohshima, K., Montermini, L., Pandolfo, M., Wells, R. D. (2001). Sticky DNA, a self-associated complex formed at long GAA*TTC repeats in intron 1 of the frataxin gene, inhibits transcription. Journal of Biological Chemistry, 276(29), 27171–27177.

    Article  Google Scholar 

  131. Paez-Colasante, X., Figueroa-Romero, C., Sakowski, S. A., Goutman, S. A., Feldman, E. L. (2015). Amyotrophic lateral sclerosis: mechanisms and therapeutics in the epigenomic era. Nature Reviews Neurology, 11(5), 266–279.

    Article  Google Scholar 

  132. Koch, M. W., Metz, L. M., Kovalchuk, O. (2013). Epigenetic changes in patients with multiple sclerosis. Nature Reviews Neurology, 9(1), 35–43.

    Article  Google Scholar 

  133. Sandi, C., Al-Mahdawi, S., & Pook, M. A. (2013). Epigenetics in Friedreich’s ataxia: challenges and opportunities for therapy. Genetics Research International. 2013.

  134. Libri, V., Yandim, C., Athanasopoulos, S., Loyse, N., Natisvili, T., Law, P. P., … & Leiper, J. (2014). Epigenetic and neurological effects and safety of high-dose nicotinamide in patients with Friedreich’s ataxia: an exploratory, open-label, dose-escalation study. The Lancet, 384(9942), 504–513.

  135. Perlman, S. L. (2012). A review of Friedreich ataxia clinical trial results. Journal of Child Neurology, 27(9), 1217–1222.

    Article  MathSciNet  Google Scholar 

  136. Mariotti, C., Fancellu, R., Caldarazzo, S., Nanetti, L., Di Bella, D., Plumari, M., … & Taroni, F. (2012). Erythropoietin in Friedreich ataxia: no effect on frataxin in a randomized controlled trial. Movement Disorders, 27(3), 446–449.

  137. Kokaia, Z., Martino, G., Schwartz, M., Lindvall, O. (2012). Cross-talk between neural stem cells and immune cells: the key to better brain repair [quest]. Nature Neuroscience, 15(8), 1078–1087.

    Article  Google Scholar 

  138. Ekdahl, C. T., Claasen, J. H., Bonde, S., Kokaia, Z., Lindvall, O. (2003). Inflammation is detrimental for neurogenesis in adult brain. Proceedings of the National Academy of Sciences, 100(23), 13632–13637.

    Article  Google Scholar 

  139. Skihar, V., Silva, C., Chojnacki, A., Döring, A., Stallcup, W. B., Weiss, S., et al. (2009). Promoting oligodendrogenesis and myelin repair using the multiple sclerosis medication glatiramer acetate. Proceedings of the National Academy of Sciences, 106(42), 17992–17997.

    Article  Google Scholar 

  140. Butovsky, O., Ziv, Y., Schwartz, A., Landa, G., Talpalar, A. E., Pluchino, S., … & Schwartz, M. (2006). Microglia activated by IL-4 or IFN-γ differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Molecular and Cellular Neuroscience, 31(1), 149–160.

  141. Villeda, S. A., Luo, J., Mosher, K. I., Zou, B., Britschgi, M., Bieri, G., … & Lucin, K. M. (2011). The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature, 477(7362), 90–94.

  142. Song, H., Stevens, C. F., Gage, F. H. (2002). Astroglia induce neurogenesis from adult neural stem cells. Nature, 417(6884), 39–44.

    Article  Google Scholar 

Download references

Acknowledgments

RAA was supported by the Program of Competitive Growth of Kazan Federal University and subsidy allocated to Kazan Federal University for the state assignment in the sphere of scientific activities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arindam Bit.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarai, S., Bit, A., dos Reis, H.J. et al. Stratifying Heterogeneous Dimension of Neurodegenerative Diseases: Intervention for Stipulating Epigenetic Factors to Combat Oxidative Stress in Human Brain. BioNanoSci. 6, 411–422 (2016). https://doi.org/10.1007/s12668-016-0240-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-016-0240-y

Keywords

Navigation