Skip to main content
Log in

Ultrasensitive Piezoresistive Pressure Sensors Based on Interlocked Micropillar Arrays

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The development of wearable electronic skins is drawing many interests due to potential applications in prosthetic limbs, robotic skins, and human healthcare monitoring devices. Here, we demonstrate piezoresistive wearable electronic skins based on conductive composite elastomers with interlocked geometry of micropillar arrays. The interlocked micropillar arrays enable the huge variation of contact area and thus the contact resistance between interlocked micropillar arrays when they are deformed in response to external pressure stimuli. In this study, we show that the contact resistance is strongly affected by the variation of diameter, pitch size, and shape of micropillar arrays. The pressure sensor with optimized micropillar dimension shows an ultrahigh pressure sensitivity (−22.8 kPa−1) and response time (∼0.07 s). Finally, we demonstrate that the wearable electronic skin attached on the fingertip is capable of detecting the pressure and vibration signal simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sekitani, T., Yokota, T., Zschieschang, U., Klauk, H., Bauer, S., Takeuchi, K., et al. (2009). Organic nonvolatile memory transistors for flexible sensor arrays. Science, 326(5959), 1516–1519.

    Article  Google Scholar 

  2. Takei, K., Takahashi, T., Ho, J. C., Ko, H., Gillies, A. G., Leu, P. W., et al. (2010). Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nature Materials, 9(10), 821–826.

    Article  Google Scholar 

  3. Yamada, T., Hayamizu, Y., Yamamoto, Y., Yomogida, Y., Izadi-Najafabadi, A., Futaba, D. N., et al. (2011). A stretchable carbon nanotube strain sensor for human-motion detection. Nature Nanotechnology, 6(5), 296–301.

    Article  Google Scholar 

  4. Pang, C., Lee, G.-Y., T-i, K., Kim, S. M., Kim, H. N., Ahn, S.-H., et al. (2012). A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nature Materials, 11(9), 795–801.

    Article  Google Scholar 

  5. Tee, B. C., Wang, C., Allen, R., Bao, Z. (2012). An electrically and mechanically self-healing composite with pressure-and flexion-sensitive properties for electronic skin applications. Nature Nanotechnology, 7(12), 825–832.

    Article  Google Scholar 

  6. Webb, R. C., Bonifas, A. P., Behnaz, A., Zhang, Y., Yu, K. J., Cheng, H., et al. (2013). Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nature Materials, 12, 938–944.

    Article  Google Scholar 

  7. Wang, C., Hwang, D., Yu, Z., Takei, K., Park, J., Chen, T., et al. (2013). User-interactive electronic skin for instantaneous pressure visualization. Nature Materials, 12(10), 899–904.

    Article  MATH  Google Scholar 

  8. Mannsfeld, S. C., Tee, B. C., Stoltenberg, R. M., Chen, C. V. H., Barman, S., Muir, B. V., et al. (2010). Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nature Materials, 9(10), 859–864.

    Article  Google Scholar 

  9. Lipomi, D. J., Vosgueritchian, M., Tee, B. C., Hellstrom, S. L., Lee, J. A., Fox, C. H., et al. (2011). Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nature Nanotechnology, 6(12), 788–792.

    Article  Google Scholar 

  10. Schwartz, G., Tee, B. C.-K., Mei, J., Appleton, A. L., Kim, D. H., Wang, H., et al. (2013). Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nature Communications, 4, 1859.

    Article  Google Scholar 

  11. Persano, L., Dagdeviren, C., Su, Y., Zhang, Y., Girardo, S., Pisignano, D., et al. (2013). High performance piezoelectric devices based on aligned arrays of nanofibers of poly (vinylidenefluoride-co-trifluoroethylene). Nature Communications, 4, 1633.

    Article  Google Scholar 

  12. Wu, W., Wen, X., Wang, Z. L. (2013). Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging. Science, 340(6135), 952–957.

    Article  Google Scholar 

  13. Fan, F.-R., Lin, L., Zhu, G., Wu, W., Zhang, R., Wang, Z. L. (2012). Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Letters, 12(6), 3109–3114.

    Article  Google Scholar 

  14. Yao, H. B., Ge, J., Wang, C. F., Wang, X., Hu, W., Zheng, Z. J., et al. (2013). A flexible and highly pressure‐sensitive graphene–polyurethane sponge based on fractured microstructure design. Advanced Materials, 25(46), 6692–6698.

    Article  Google Scholar 

  15. Ge, J., Yao, H. B., Wang, X., Ye, Y. D., Wang, J. L., Wu, Z. Y., et al. (2013). Stretchable conductors based on silver nanowires: improved performance through a binary network design. Angewandte Chemie, 125(6), 1698–1703.

    Article  Google Scholar 

  16. Pan, L., Chortos, A., Yu, G., Wang, Y., Isaacson, S., Allen, R., et al. (2014). An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nature Communications, 5, 3002.

    Google Scholar 

  17. Wu, Z. Y., Li, C., Liang, H. W., Chen, J. F., Yu, S. H. (2013). Ultralight, flexible, and fire‐resistant carbon nanofiber aerogels from bacterial cellulose. Angewandte Chemie International Edition, 52(10), 2925–2929.

    Article  Google Scholar 

  18. Gong, S., Schwalb, W., Wang, Y., Chen, Y., Tang, Y., Si, J., et al. (2014). A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nature Communications, 5, 3132.

    Google Scholar 

  19. Chen, Z., Ren, W., Gao, L., Liu, B., Pei, S., Cheng, H.-M. (2011). Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nature Materials, 10(6), 424–428.

    Article  Google Scholar 

  20. Park, J., Lee, Y., Hong, J., Ha, M., Jung, Y.-D., Lim, H., et al. (2014). Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins. ACS Nano, 8(5), 4689–4697.

    Article  Google Scholar 

  21. Stassi, S., & Canavese, G. (2012). Spiky nanostructured metal particles as filler of polymeric composites showing tunable electrical conductivity. Journal of Polymer Science Part B: Polymer Physics, 50(14), 984–992.

    Article  Google Scholar 

  22. Newns, D. M., Elmegreen, B. G., Liu, X. H., Martyna, G. J. (2012). High response piezoelectric and piezoresistive materials for fast, low voltage switching: simulation and theory of transduction physics at the nanometer‐scale. Advanced Materials, 24(27), 3672–3677.

    Article  Google Scholar 

  23. Zhang, X.-S., Han, M.-D., Wang, R.-X., Zhu, F.-Y., Li, Z.-H., Wang, W., et al. (2013). Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. Nano Letters, 13(3), 1168–1172.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF-2011-0014965, NRF-2012K1A3A1A20031618), BK21 Plus Program (10Z20130011057), Korea Institute of Machinery & Materials (KIMM) (NK175B), and Korea Institute of Science and Technology (KIST) (2E22112-11-249).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyunhyub Ko.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 79 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J., Lee, Y., Lim, S. et al. Ultrasensitive Piezoresistive Pressure Sensors Based on Interlocked Micropillar Arrays. BioNanoSci. 4, 349–355 (2014). https://doi.org/10.1007/s12668-014-0151-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-014-0151-8

Keywords

Navigation