Skip to main content
Log in

RF MEMS-Based Biosensor for Pathogenic Bacteria Detection

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

A biosensor which is used for determining the concentration of substances and other parameters of biological interest is an integral part of the public health systems. Micromachined sensors based on radio frequency–microelectromechanical systems are an emerging field of study for biosensing applications. In this work, we propose a novel detection method for pathogenic bacteria using a coplanar waveguide (CPW) as well as distributed microelectromechanical systems transmission line (DMTL). Escherichia coli has been chosen for the study due to the widespread food poisoning outbreaks caused by its infective strains. But, the model can be easily extended to other pathogenic bacteria as well. The E. coli bacterium was modeled as a three-shell structure based on the electrical properties of the E. coli cell. An initial study was done using a CPW. The scattering parameters and voltage standing wave ratio were analyzed and found to vary as the number of bacteria positioned on the CPW increased. Reflection parameters were found to have more deviation than the transmission parameters. DMTL was designed by introducing periodic structures in CPW, to allow increased interaction between the electromagnetic waves and the measurand. This improved the quality factor of the resonant peaks in reflection coefficient, thereby allowing us to correlate the number of bacteria to the shift in resonant frequency. Selectivity towards E. coli bacteria can be achieved by immobilizing a functionalization layer of anti E. coli antibody on the central conductor of CPW/DMTL. With sufficient calibration, this method can be used to detect and measure the concentration of other pathogenic bacteria as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ivnitski, D., Hamid, I. A., Atanasov, P., Wilkins, E. (1991). Review—biosensors for detection of pathogenic bacteria. Biosensors & Bioelectronics, 14, 599–624. doi:10.1016/S0956-5663(99)00039-1.

    Article  Google Scholar 

  2. Wang, L., Sipe, D. M., Xu, Y., Lin, Q. (2008). A MEMS thermal biosensor for metabolic monitoring applications. Journal of Microelectromechanical Systems, 17, 318–327. doi:10.1109/JMEMS.2008.916357.

    Article  Google Scholar 

  3. Madou, M., & Florkey, J. (2000). From batch to continuous manufacturing of microbiomedical devices. Chemical Reviews, 100, 2679–2692.

    Article  Google Scholar 

  4. Kima, Y. I., Park, T. S., Kang, J. H., Lee, M. C., Kim, J. T., Park, J. H., et al. (2006). Biosensors for label free detection based on RF and MEMS technology. Sensors and Actuators B, 119, 592–599. doi:10.1016/j.snb.2006.01.015.

    Article  Google Scholar 

  5. Kricka, L. J. (2001). Microchips, microarrays, biochips and nanochips: personal laboratories for the 21st century. Clinica Chimica Acta, 307, 219–223. doi:10.1016/S0009-8981(01)00451-X.

    Article  Google Scholar 

  6. Rangel, J. M., Sparling, P. H., Crowe, C., Griffin, P. M., Swerdlow, D. L. (2005). Epidemiology of Escherichia coli O157:H7 outbreaks, United States, 1982–2002. Emerging Infectious Diseases, 11, 603–609. doi:10.3201/eid1104.040739.

    Article  Google Scholar 

  7. Wynter, S. A., & Ivy, J. E. (2009). Simulating public health emergency response: a case study. Process IEEE Winter Simulation Conference, 2009, 1957–1986. doi:10.1109/WSC.2009.5429730.

    Google Scholar 

  8. Nestlé USA (2009). Press release, Nestlé USA's baking division initiates voluntary recall. Nestlé USA, June 19, 2009. http://www.fda.gov/Safety/Recalls/ucm167954.htm. Accessed 8 January 2012.

  9. National Beef Packing Co. LLC (2011). Recall release, National Beef Packing Co. LLC Recall, Indiana State Department of Health. August 15, 2011. http://www.state.in.us/isdh/files/National_Beef_Packing_Co_LLC_Recall.pdf. Accessed 12 January 2012.

  10. Gau, J. J., Lan, E. H., Dunn, B., Ho, C. M., Woo, J. C. S. (2001). A MEMS based amperometric detector for E. coli bacteria using self-assembled monolayer. Biosensors & Bioelectronics, 16, 745–755. doi:10.1016/S0956-5663(01)00216-0.

    Article  Google Scholar 

  11. Polyzoev, V., Enikov, E., Heinze, B., Yoon, J. Y. (2009). Magnetic particle enhanced microcantilever biosensor for rapid and sensitive E. coli detection. IEEE/ISOT International Symposium on Optomechatronic Technologies 387–391. doi:10.1109/ISOT.2009.5326138.

  12. Bakar, M. H. A., Ibrahim, M. H., Kassim, N. M., Mohammad, A. B. (2009) A preliminary investigation on MEMS based immunosensor for E. coli O157:H7 detection. Proc, IEEE 9th Malaysia International Conference on Communications 51–54. doi:10.1109/MICC.2009.5431414.

  13. Zhu, P., Shelton, D. R., Karns, J. S., Sundaram, A., Li, S., Amstutz, P., et al. (2005). Detection of water-borne E. coli O157 using the integrating waveguide biosensor. Biosens Bioelectron, 21, 678–683. doi:10.1016/j.bios.2005.01.005.

    Article  Google Scholar 

  14. Berkenpas, E., Kenny, T., Millard, P., Cunha, M. P. D. (2005). A langasite SH SAW O157:H7 E. coli sensor. IEEE Ultrasonics Symposium, 1, 54–57.

    Google Scholar 

  15. Chaudhuri, C. R., Das, R. D., Dey, S., Das, S. (2011). Functionalised silicon microchannel immunosensor with portable electronic readout for bacteria detection in blood. IEEE Sensors J. 323-326. doi:10.1109/ICSENS.2011.6127364.

  16. Huang, X. J., & Zhang, Y. Y. (2006). Electrical determination of E. coli O157:H7 using tin-oxide nanowire coupled with microfluidic chip. IEEE Sensors J, 6, 1376–1377. doi:10.1109/JSEN.2006.884433.

    Article  Google Scholar 

  17. Dastider, S. G., Barizuddin, S., Wu, Y., Dweik, M., Almasri, M. (2013). Impedance biosensor based on interdigitated electrode arrays for detection of low levels of E. coli O157:H7. MEMS 2013, Taipei, Taiwan. doi:10.1109/MEMSYS.2013.6474404.

  18. Lee, J. Y., Park, E. J., Min, N. K., Pak, J. J., Lee, C. J., Kim, M. J., et al. (2009). Carbon nanotube based electrochemical immunosensors for high-sensitive detection of E. coli. IEEE Sensors 2009 Conference, 1176–1179. doi:10.1109/ICSENS.2009.5398352.

  19. Wu, Y., Hu, F., Gan, N., Li, T., Gao, L. (2010). One novel composite nano-particles membrane modified amperometric immunosensor for Escherichia coli in polluted waters. 3rd International Conference on Biomedical Engineering and Informatics, 2010. doi:10.1109/BMEI.2010.5639388.

  20. Yang, Y., Kim, S., Chae, J. (2011). Separating and detecting Escherichia coli in a microfluidic channel for urinary tract infection applications. Journal of Microelectromechanical Systems, 20, 819–827. doi:10.1109/JMEMS.2011.2159095.

    Article  Google Scholar 

  21. Li, L. J. (2010). Simultaneous detection of organic and in-organic substances in a mixed aqueous solution using a microwave dielectric sensor. Progress In Electromagnetics Research C, 14, 163–171. doi:10.2528/PIERC10051308.

    Article  Google Scholar 

  22. Li, L., & Uttamchandani, D. (2009). A microwave dielectric biosensor based on suspended distributed MEMS transmission lines. IEEE Sensors Journal, 9, 1825–1830. doi:10.1109/JSEN.2009.2031388.

    Article  Google Scholar 

  23. Li, L., & Uttamchandani, D. (2009). Flip-chip distributed MEMS transmission lines (DMTLs) for bio sensing applications, IEEE Trans. Industrial Electronics, 56, 986–990. doi:10.1109/TIE.2008.2003204.

    Article  Google Scholar 

  24. Sadiku, M. N. (2005). Elements of electromagnetics. USA: Oxford University Press.

    Google Scholar 

  25. Simons, R. N. (2001). Coplanar waveguide circuits, components, and systems. Cleveland: Wiley.

    Book  Google Scholar 

  26. Asami, K., Hanai, T., Koizumi, N. (1980). Dielectric analysis of Escherichia coli suspensions in the light of the theory of interfacial polarization. Biophysical Journal, 31, 215–228. doi:10.1016/S0006-3495(80)85052-1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chithra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chithra, S., P. & Prince, A.A. RF MEMS-Based Biosensor for Pathogenic Bacteria Detection. BioNanoSci. 3, 321–328 (2013). https://doi.org/10.1007/s12668-013-0098-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-013-0098-1

Keywords

Navigation