Skip to main content

Advertisement

Log in

Amyloid-Binding Aptamer Conjugated Curcumin–PLGA Nanoparticle for Potential Use in Alzheimer’s Disease

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Alzheimer’s disease is becoming a serious concern in the medical field due to its severity and prevalence. This multifactorial disease manifested by various genetic and nongenetic factors makes its treatment very difficult. Due to the inefficacy of the currently available drugs, newer therapeutic strategies are increasingly in demand. Most of the current drug discovery initiatives are pivoted around amyloid pathology which is considered to be central to the disease progression. In this work, we propose the use of amyloid-binding aptamer conjugated to poly(lactic-co-glycolic acid) (PLGA)-coated curcumin nanoparticles to bind to the amyloid plaques. Curcumin is a plant-derived compound with reported anti-amyloid activity. Recent reports reveal the importance of plasma amyloid in Alzheimer development. We propose that the amyloid-binding aptamer attached curcumin–PLGA nanoparticles can be used as a potential tool in targeting the plasma amyloid and thus helps in Alzheimer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hardy, J., Selkoe, D. J. (2002). The amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics. Science, 297, 353–356. doi:10.1126/science.1072994.

    Article  Google Scholar 

  2. Mathew, A., Yoshida, Y., Maekawa, T., Sakthi Kumar, D. (2011). Alzheimer's disease: Cholesterol a menace? Brain Research Bulletin, 86, 1–12. doi:10.1016/j.brainresbull.2011.06.006.

    Article  Google Scholar 

  3. Mawuenyega, K. G., Sigurdson, W., Ovod, V., Munsell, L., Kasten, T., Morris, J. C., Yarasheski, K. E., Bateman, R. J. (2010). Decreased clearance of CNS β-amyloid in Alzheimer’s disease. Science, 330, 1774. doi:10.1126/science.1197623.

    Article  Google Scholar 

  4. Ghiso, J., & Frangione, B. (2002). Amyloidosis and Alzheimer’s disease. Advanced Drug Delivery Reviews, 54, 1539–1551. doi:10.1016/S0169-409X(02)00149-7.

    Article  Google Scholar 

  5. Karran, E., Mercken, M., Strooper, B. D. (2011). The amyloid cascade hypothesis for Alzheimer's disease: An appraisal for the development of therapeutics. Nature Review Drug Discovery, 10, 698–712. doi:10.1038/nrd3505.

    Article  Google Scholar 

  6. Iwata, N., Higuchi, M., Saido, T. C. (2005). Metabolism of amyloid-β peptide and Alzheimer's disease. Pharmacology & Therapeutics, 108, 129–148. doi:10.1016/j.pharmthera.2005.03.010.

    Article  Google Scholar 

  7. Seppälä, T. T., Herukka, S.-K., Hänninsen, T., Tervo, S., Hallikainen, M., Soininen, H., Pirttilä, T. (2010). Plasma Aβ42 and Aβ40 as markers of cognitive change in follow-up: A prospective, longitudinal, population-based cohort study. Journal of Neurology, Neurosurgery & Psychiatry, 81(10), 1123–1127. doi:10.1136/jnnp.2010.205757.

    Article  Google Scholar 

  8. Pan, W., Solomon, B., Maness, L. M., Kastin, A. J. (2002). Antibodies to β-amyloid decrease the blood-to-brain transfer of β-amyloid peptide. Experimental Biology and Medicine, 227, 609–615.

    Google Scholar 

  9. Villemagne, V. L., Perez, K. A., Pike, K. E., Kok, W. M., Rowe, C. C., White, A. R., Bourgeat, P., Salvado, O., Bedo, J., Hutton, C. A., Faux, N. G., Masters, C. L., Barnham, K. J. (2010). Blood-borne amyloid-β dimer correlates with clinical markers of Alzheimer's disease. The Journal of Neuroscience, 30, 6315–6322. doi:10.1523/JNEUROSCI.5180-09.2010.

    Article  Google Scholar 

  10. Takeda, S., Sato, N., Rakugi, H., Morishita, R. (2010). Plasma β-amyloid as potential biomarker of Alzheimer disease: Possibility of diagnostic tool for Alzheimer disease. Molecular BioSystems, 6, 1760–1766. doi:10.1039/C003148H.

    Article  Google Scholar 

  11. Frenkel, D., & Solomon, B. (2001). Towards Alzheimer's β-amyloid vaccination. Biologicals, 29, 243–247. doi:10.1006/biol.2001.0294.

    Article  Google Scholar 

  12. Schnabel, J. (2011). Vaccines: Chasing the dream. Nature, 475, S18–S19. doi:10.1038/475S18a.

    Article  Google Scholar 

  13. Smith, E. E., & Greenberg, S. M. (2009). β-Amyloid, blood vessels, and brain function. Stroke, 40, 2601–2606. doi:10.1161/STROKEAHA.108.536839.

    Article  Google Scholar 

  14. Sundelof, J., Giedraitis, V., Irizarry, M. C., Sundstrom, J., Ingelsson, E., Ronnemaa, E., Arnlov, J., Gunnarsson, M. D., Hyman, B. T., Basun, H., Ingelsson, M., Lannfelt, L., Kilander, L. (2008). Plasma β amyloid and the risk of Alzheimer disease and dementia in elderly men: A prospective, population-based cohort study. Archives of Neurology, 65, 256–263. doi:10.1001/archneurol.2007.57.

    Article  Google Scholar 

  15. Okereke, O. I., Xia, W., Selkoe, D. J., Grodstein, F. (2009). Ten-year change in plasma amyloid beta levels and late-life cognitive decline. Archives of Neurology, 66, 1247–1253. doi:10.1001/archneurol.2009.207.

    Article  Google Scholar 

  16. Schupf, N., Tang, M. X., Fukuyama, H., Manly, J., Andrews, H., Mehta, P., Ravetch, J., Mayeux, R. (2008). Peripheral Aβ subspecies as risk biomarkers of Alzheimer's disease. Proceedings of the National Academy of Sciences, 105, 14052–14057. doi:10.1073/pnas.0805902105.

    Article  Google Scholar 

  17. Pesaresi, M., Lovati, C., Bertora, P., Mailland, E., Galimberti, D., Scarpini, E., Quadri, P., Forloni, G., Mariani, C. (2006). Plasma levels of beta-amyloid (1–42) in Alzheimer's disease and mild cognitive impairment. Neurobiology of Aging, 27, 904–905. doi:10.1016/j.neurobiolaging.2006.03.004.

    Article  Google Scholar 

  18. Brenn, A., Grube, M., Peters, M., Fischer, A., Jedlitschky, G., Kroemer, H. K., Warzok, R. W., Vogelgesang, S. (2011). Beta-amyloid downregulates MDR1-P-glycoprotein (Abcb1) expression at the blood–brain barrier in mice. International Journal of Alzheimer's Disease. doi:10.4061/2011/690121.

  19. Matsuoka, Y., Saito, M., LaFrancois, J., Saito, M., Gaynor, K., Olm, V., Wang, L., Casey, E., Lu, Y., Shiratori, C., Lemere, C., Duff, K. (2003). Novel therapeutic approach for the treatment of Alzheimer's disease by peripheral administration of agents with an affinity to β-amyloid. The Journal of Neuroscience, 23, 29–33.

    Google Scholar 

  20. Sutcliffe, J. G., Hedlund, P. B., Thomas, E. A., Bloom, F. E., Hilbush, B. S. (2011). Peripheral reduction of β-amyloid is sufficient to reduce brain β-amyloid: Implications for Alzheimer's disease. Journal of Neuroscience Research, 89, 808–814. doi:10.1002/jnr.22603.

    Article  Google Scholar 

  21. Shi, H., Tang, Z., Kim, Y., Nie, H., Huang, Y. F., He, X., Deng, K., Wang, K., Tan, W. (2010). In vivo fluorescence imaging of tumors using molecular aptamers generated by cell-SELEX. Chemistry, an Asian Journal, 5, 2209–13. doi:10.1002/asia.201000242.

    Article  Google Scholar 

  22. Kim, D., Jeong, Y. Y., Jon, S. (2010). A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano, 4, 3689–96. doi:10.1021/nn901877h.

    Article  Google Scholar 

  23. Fang, X., & Tan, W. (2010). Aptamers generated from cell-SELEX for molecular medicine: A chemical biology approach. Accounts of Chemical Research, 43, 48–57. doi:10.1021/ar900101s.

    Article  Google Scholar 

  24. Brody, E. N., & Gold, L. (2000). Aptamers as therapeutic and diagnostic agents. Reviews in Molecular Biotechnology, 74, 5–13. doi:10.1016/S1389-0352(99)00004-5.

    Article  Google Scholar 

  25. Shi, H., He, X., Wang, K., Wu, X., Ye, X., Guo, Q., Tan, W., Qing, Z., Yang, X., Zhou, B. (2011). Activatable aptamer probe for contrast-enhanced in vivo cancer imaging based on cell membrane protein-triggered conformation alteration. Proceedings of the National Academy of Sciences of the United States of America, 108, 3900–5. doi:10.1073/pnas.1016197108.

    Article  Google Scholar 

  26. Ylera, F., Lurz, R., Erdmann, V. A., Fürste, J. P. (2002). Selection of RNA aptamers to the Alzheimer's disease amyloid peptide. Biochemical and Biophysical Research Communications, 290, 1583–1588. doi:10.1006/bbrc.2002.6354.

    Article  Google Scholar 

  27. Rahimi, F., Murakami, K., Summers, J. L., Chen, C.-H. B., Bitan, G. (2009). RNA aptamers generated against oligomeric Aβ40 recognize common amyloid aptatopes with low specificity but high sensitivity. PloS One, 4, e7694. doi:10.1371/journal.pone.0007694.

    Article  Google Scholar 

  28. Rentmeister, A., Bill, A., Wahle, T., Walter, J., Famulok, M. (2006). RNA aptamers selectively modulate protein recruitment to the cytoplasmic domain of β-secretase BACE1 in vitro. RNA, 12, 1650–1660. doi:10.1261/rna.126306.

    Article  Google Scholar 

  29. Bunka, D. H. J., Mantle, B. J., Morten, I. J., Tennent, G. A., Radford, S. E., Stockley, P. G. (2007). Production and characterization of RNA aptamers specific for amyloid fibril epitopes. Journal of Biological Chemistry, 282, 34500–34509. doi:10.1074/jbc.M703679200.

    Article  Google Scholar 

  30. Rahimi, F., Bitan, G. (2010). Selection of aptamers for amyloid beta-protein, the causative agent of Alzheimer’s disease. Journal of Visualized Experiments. e1955. doi: 10.3791/1955

  31. Takahashi, T., Tada, K., Mihara, H. (2009). RNA aptamers selected against amyloid β-peptide (Aβ) inhibit the aggregation of Aβ. Molecular BioSystems, 5, 986–991. doi:10.1039/B903391B.

    Article  Google Scholar 

  32. Cartiera, M. S., Ferreira, E. C., Caputo, C., Egan, M. E., Caplan, M. J., Saltzman, W. M. (2009). Partial correction of cystic fibrosis defects with PLGA nanoparticles encapsulating curcumin. Molecular Pharmaceutics, 7(1), 86–93. doi:10.1021/mp900138a.

    Article  Google Scholar 

  33. Westhof, E., Masquida, B., Jossinet, F. (2011). Predicting and modeling RNA architecture. Cold Spring Harbor Perspectives in Biology, 3. doi:10.1101/cshperspect.a003632.

  34. Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research, 31, 3406–3415. doi:10.1093/nar/gkg595.

    Article  Google Scholar 

  35. Mathews, D. H., Disney, M. D., Childs, J. L., Schroeder, S. J., Zuker, M., Turner, D. H. (2004). Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proceedings of the National Academy of Sciences of the United States of America, 101, 7287–7292. doi:10.1073/pnas.0401799101.

    Article  Google Scholar 

  36. Mathews, D. H., Sabina, J., Zuker, M., Turner, D. H. (1999). Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. Journal of Molecular Biology, 288, 911–940. doi:10.1006/jmbi.1999.2700.

    Article  Google Scholar 

Download references

Acknowledgments

A. Mathew, A. Aravind, and D. Brahatheeswaran would like to sincerely acknowledge the receipt of Monbukagakusho Scholarship from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Sakthi Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathew, A., Aravind, A., Brahatheeswaran, D. et al. Amyloid-Binding Aptamer Conjugated Curcumin–PLGA Nanoparticle for Potential Use in Alzheimer’s Disease. BioNanoSci. 2, 83–93 (2012). https://doi.org/10.1007/s12668-012-0040-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-012-0040-y

Keywords

Navigation