Skip to main content

Advertisement

Log in

Filings Morphology-Dependent Hydrogen Storage Properties of Magnesium-Rich Mg–Y–Zn Alloy

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The filings of magnesium-rich Mg98.5Y1Zn0.5 alloy with different morphologies were prepared by using three kinds of files with arc (A), triangle (T), and flat (F) cross sections, respectively. Their microstructures, hydrogen storage properties, and mechanisms were investigated. The results reveal that these filings all present high storage capacity of about 7.0 wt% and excellent hydrogen sorption kinetics. However, the hydrogen ab/desorption properties of these filings exhibit obvious differences, which is closely related with their microscopic morphologies. Among them, the filings prepared by F file possess the best hydrogen sorption properties due to their higher saw teeth density and more dislocations induced through F file relative to those by A and T files. First-principles calculations reveal that the YH2 not only weakens the H–H and Mg–H bond strength, but also reduces the recombination energy of H atoms from MgH2 surface and the dissociation energy of H2 molecule on Mg surface during the hydrogenation/dehydrogenation of Mg–Y–Zn alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Sun Y H, Shen C Q, Lai Q W, Liu W, Wang D W, and Aguey Zinsou K F, Energy Storage Mater 10 (2018) 168.

    Google Scholar 

  2. Mohtadi R, and Orimo S I, Nat Rev Mater 2 (2017) 1.

    Google Scholar 

  3. Aschlapbach L, and Zuttel A, Nature 414 (2001) 353.

    Google Scholar 

  4. Yu X B, Tang Z W, Sun D L, Ouyang L Z, and Zhu M, Prog Mater Sci 88 (2017) 1.

    Google Scholar 

  5. Rusman N A A, and Dahari M, Int J Hydrogen Energy 41 (2016) 12108.

    CAS  Google Scholar 

  6. Prabhukhot P R, Wagh M M, and Gangal A C, Adv Energy Power 4 (2016) 11.

    Google Scholar 

  7. Xie X B, Chen M, Hu M M, Wang B L, Yu R H, and Liu T, Int J Hydrogen Energy 44 (2019) 10694.

    CAS  Google Scholar 

  8. Chen X Y, Chen R R, Ding X, Fang H Z, Li X Z, Ding H S, Su Y Q, Guo JJ, and Fu H Z, Energy 166 (2019) 587.

    CAS  Google Scholar 

  9. Hou X J, Wang Y, Yang Y L, Hu R, Yang G, Feng L, and Suo G Q, Energy 188 (2019) 116081.

    CAS  Google Scholar 

  10. Ouyang L Z, Cao Z J, Wang H, Hu R Z, and Zhu M, J Alloys Compd 691 (2017) 422.

    CAS  Google Scholar 

  11. Ren L, Zhou S, and Ou XM, Energy 209 (2020) 118482.

    CAS  Google Scholar 

  12. Xie X B, Hou C X, Chen C G, Sun X Q, Peng Y, Zhang Y P, Yu R H, Wang B, and Du W, Energy 211 (2020) 118959.

    CAS  Google Scholar 

  13. Zhang J, Yan S, and Qu H, Int J Hydrogen Energy 43 (2018) 1545.

    CAS  Google Scholar 

  14. Zhong H C, Huang Y S, Du Z Y, Lin H J, Lu X J, Cao C Y, Chen J H, and Dai L Y, Int J Hydrogen Energy 45 (2020) 27404.

    CAS  Google Scholar 

  15. Dou B L, Zhang H, Cui G M, He M X, Ruan C J, Wang Z L, Chen H S, Xu Y J, Jiang B, and Wu C F, Energy 167 (2019) 1097.

    CAS  Google Scholar 

  16. Yong H, Guo S H, Yuan Z M, Qi Y, Zhao D L, and Zhang Y H, J Mater Sci Technol 51 (2020) 84.

    Google Scholar 

  17. Zhang J, Huang Y N, Mao C, and Peng P, J Alloys Compd 538 (2012) 205.

    CAS  Google Scholar 

  18. Zhang J, Yan S, Xia G L, Zhou X J, Lu X Z, Yu L P, Yu X B, and Peng P, J Magnes Alloys 9 (2021) 647.

    CAS  Google Scholar 

  19. Ismail M, Energy 79 (2015) 177.

    CAS  Google Scholar 

  20. Chen L, Hu C Y, and Liu F, RSC Adv 9 (2019) 4445.

    CAS  Google Scholar 

  21. Luo F P, Wang H, Ouyang L Z, Zeng M Q, Liu J W, and Zhu M, Int J Hydrogen Energy 38 (2013) 10912.

    CAS  Google Scholar 

  22. Wu X, Zhang R, and Yang J, Phys Chem Chem Phys 18 (2016) 19412.

    CAS  Google Scholar 

  23. Shang C X, and Guo Z X, J Power Sources 129 (2004) 73.

    CAS  Google Scholar 

  24. Zhang W, Cheng Y, Han D, Han S M, Energy 93 (2015) 625.

    CAS  Google Scholar 

  25. Zhang C, Wang H, Ouyang L Z, Lin H J, and Zhu M, Prog Nat Sci Mater Int 27 (2017) 622.

    CAS  Google Scholar 

  26. Zou J X, Guo H, Zeng X Q, Zhou S, Chen X, and Ding W J, Int J Hydrogen Energy 38 (2013) 8852.

    CAS  Google Scholar 

  27. Luo Q, Li J D, Li B, Liu B, Shao H Y, and Li Q, J Magnes Alloys 7 (2019) 58.

    CAS  Google Scholar 

  28. Liu J W, Zou C C, Wang H, Ouyang L Z, and Zhu M, Int J Hydrogen Energy 38 (2013) 10438.

    CAS  Google Scholar 

  29. Zhang Y H, Wei X, Zhang W, Yuan Z M, Gao J L, Qi Y, and Ren H P, Int J Hydrogen Energy 45 (2020) 33832.

    CAS  Google Scholar 

  30. Zhou X J, Yao Y, Zhang J, Chen X M, Huang W Y, Pan J, Wang H P, and Weng MP, J Mater Sci Technol 70 (2021) 156.

    Google Scholar 

  31. Zhou X J, Xiong W Y, Zeng G, Xiao H C, Zhang J, Lu X Z, and Xiao X M, Mater Sci Eng A 805 (2021), 140596.

    CAS  Google Scholar 

  32. Liu L, Zhou X J, Yu S L, Zhang J, Shu X, and Su Z J, J Magnes Alloys (2021). Doi: https://doi.org/10.1016/j.jma.2020.09.023.

    Article  Google Scholar 

  33. Huang S-J, Chiu C, Chou T-Y, and Rabkin E, Int J Hydrogen Energy 43 (2018) 4371.

    CAS  Google Scholar 

  34. Edalati K, Emami H, Staykov A, Smith D J, Akiba E, and Horita Z J, Acta Mater 99 (2015) 150.

    CAS  Google Scholar 

  35. Silva E P, Leiva D R, Pinto H C, Floriano R, Neves A M, and Botta W J, Int J Hydrogen Energy 43 (2018) 11085.

    CAS  Google Scholar 

  36. Wu Y, Solberg J K, and Yartys V A, J Alloys Compd 445 (2018) 178.

    Google Scholar 

  37. Song M Y, Kwon S, Bae J-S, and Hong S-H, Int J Hydrogen Energy 33 (2008) 1711.

    CAS  Google Scholar 

  38. Zhang Y H, Yuan Z M, Yang T, Qi Y, Guo S H, and Zhao D L, J Cent South Univ 23 (2016) 2754.

    CAS  Google Scholar 

  39. Zhang J, He L, Yao Y, Zhou X J, Yu L P, Lu X Z, and Zhou D W, Renew Energy 154 (2020) 1229.

    CAS  Google Scholar 

  40. Liu G, Wang Y, Jiao L, and Yuan H, Int J Hydrogen Energy 38 (2014) 3822.

    Google Scholar 

  41. Zhang L, Chen L, Fan X, Xiao X, Zheng J, and Huang X, J Mater Chem A 5 (2017) 6178.

    CAS  Google Scholar 

  42. Zhang M, Xiao X, Wang X, Chen M, Lu Y, and Chen L, Nanoscale 11 (2019) 7465.

    CAS  Google Scholar 

  43. Li Q, Li Y, Liu B, Lu X G, Zhang T F, and Gu Q F, J Mater Chem A 5 (2017) 17532.

    CAS  Google Scholar 

  44. Sun Y, Wang D B, Wang J M, Liu B Z, and Peng Q M, Int J Hydrogen Energy 44 (2019) 23179.

    CAS  Google Scholar 

  45. Li Q, Luo Q, and Gu Q F, J Mater Chem A 5 (2017) 3848.

    CAS  Google Scholar 

  46. Asselli A A C, Santos SF, and Huot J, J Alloys Compd 687 (2016) 586.

    CAS  Google Scholar 

  47. Silva E P, Leiva D R, Floriano R, Oliveira V B, Pinto H C, and Botta W J, Int J Hydrogen Energy 45 (2020) 5375.

    CAS  Google Scholar 

  48. Huang S-J, Rajagopal V, and Ali A N, Int J Hydrogen Energy 44 (2019) 1047-1058.

    CAS  Google Scholar 

  49. Zhang J, Yao Y, He L, Zhou X J, Yu L P, Lu X Z, and Peng P, Energy (2020) 119315.

  50. Liu H, Ju J, Yang X W, Yan J L, Song D, Jiang J H, and Ma A B, J Alloys Compd 704 (2017) 509-517.

    CAS  Google Scholar 

  51. Zhou X J, Liu C M, Gao Y H, Jiang S N, and Chen Z Y, J Mater Eng Perform 27 (2018) 6237.

    CAS  Google Scholar 

  52. Zhu Y M, Morton A J, and Nie J E, Acta Mater 60 (2012) 6562.

    CAS  Google Scholar 

  53. Yong H, Wei X, Wang Y H, Guo S H, Yuan Z M, Qi Y, Zhao D L, and Zhang Y H, J Phys Chem Solids 144 (2020) 109516.

    CAS  Google Scholar 

  54. Han Z Y, Chen H P, and Zhou S X, Appl Surf Sci 394 (2017) 371.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51874049 and 51904036), the Science Research Project of Hunan Province Office of Education (No. 20A024), the Changsha Science and Technology Program Project (No. kq1907092), the Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation (No. 2019CL03), and the Research and Innovation Project of Graduate Students in Hunan Province (No. CX20200854).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Y., Zhang, J., Zhou, X.J. et al. Filings Morphology-Dependent Hydrogen Storage Properties of Magnesium-Rich Mg–Y–Zn Alloy. Trans Indian Inst Met 74, 3171–3184 (2021). https://doi.org/10.1007/s12666-021-02379-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02379-3

Keywords

Navigation