Skip to main content
Log in

Growth Rate of Intermetallics in Aluminum to Copper Dissimilar Welding

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The use of aluminum and copper materials increases due to their excellent electrical and thermal characteristics. The growth and the type of intermetallic compounds were varied with the various conditions in fusion welding. The present study focuses on the joining of aluminum to copper by friction welding to characterize the intermetallic layer in the interface. Heat treatment was applied for the welds using a constant temperature of 300 °C for the duration of 6 h, 12 h and 24 h. The growth of the intermetallics and their characteristics were examined by microscopic and energy-dispersive X-ray spectroscopy studies. The interdiffusion, growth rate and thickness of the intermetallic compounds were evaluated according to the heating time. The tensile strength and resistance of the welds gradually reduced with increasing the thickness of the intermetallic compounds. The fracture morphology of the welds was investigated by scanning electron microscopy on both sides of the welds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Muralimohan C H, Haribabu S, Reddy Y H, Muthupandi V, and Sivaprasad K, Procedia Mater Sci5 (2014) 1107.

    Article  CAS  Google Scholar 

  2. Joerg K, Zimmermann M, Ostwaldt A, Goebel G, Standfuß J, and Brenner B, Mater Sci Forum783 (2014) 1747.

    Google Scholar 

  3. Muralimohan C H, Ashfaq M, Ashiri R, Muthupandi V, and Sivaprasad K, Metall Mater Trans A47 (2016) 347.

    Article  CAS  Google Scholar 

  4. Cheepu M, and Che W S, Trans Indian Inst Met72 (2019) 1563.

    Article  CAS  Google Scholar 

  5. Yang J, and Cao B, Mater Des74 (2015) 19.

    Article  CAS  Google Scholar 

  6. Cheepu M, and Che W S, J Weld Join37 (2019) 46.

    Article  Google Scholar 

  7. Muralimohan C H, and Muthupandi V, Adv Mater Res794 (2013) 351.

    Article  Google Scholar 

  8. Venkateswarlu D, Cheepu M, Rao P N, Kumaran S S, and Srinivasan N, Mater Sci Forum969 (2019) 205.

    Article  Google Scholar 

  9. Krishnaja D, Cheepu M, and Venkateswarlu D, IOP Conf Ser: Mater Sci Eng 330 (2018) 012073.

    Article  Google Scholar 

  10. Ouyang J, Yarrapareddy E, and Kovacevic R, J Mater Proces Technol172 (2006) 110.

    Article  CAS  Google Scholar 

  11. Wang X G, Yan F J, and Wanf C G, Sci Tech Weld Join22 (2017) 170.

    Article  CAS  Google Scholar 

  12. Muralimohan C H, Haribabu S, Reddy Y H, Muthupandi V, and Sivaprasad K, J Adv Mech Eng Sci1 (2015) 57.

    Article  Google Scholar 

  13. Zuo D, Hu S, Shen J, and Xue Z, Mater Des58 (2014) 357.

    Article  CAS  Google Scholar 

  14. Cheepu M, and Che W S, Trans Indian Inst Met72 (2019) 1597.

    Article  CAS  Google Scholar 

  15. Cheepu M, Venkateswarlu D, Rao P N, Muthupandi V, Sivaprasad K, and Che W S, Mater Sci Forum969 (2019) 211.

    Article  Google Scholar 

  16. Meshram SD and Reddy GM, Def Technol11 (2015) 292.

    Article  Google Scholar 

  17. Cheepu M M, Muthupandi V, and Loganathan S, Mater Sci Forum710 (2012) 620.

    Article  CAS  Google Scholar 

  18. Muralimohan C H, Muthupandi V, and Sivaprasad K, Inter J Mater Res105 (2014) 350.

    Article  CAS  Google Scholar 

  19. Cheepu M, Ashfaq M, and Muthupandi V, Trans Indian Inst Met70 (2017) 2591.

    Article  CAS  Google Scholar 

  20. Muralimohan C H, Muthupandi V, and Sivaprasad K, Procedia Mater Sci5 (2014) 1120.

    Article  CAS  Google Scholar 

  21. Cheepu M, Muthupandi V, and Che W S, Appl Mech Mater877 (2018) 157.

    Article  Google Scholar 

  22. Guo Y, Liu G, Jin H, Shi Z, and Qiao G, J Mater Sci46 (2011) 2467.

    Article  CAS  Google Scholar 

  23. Sharma N, Khan Z A, and Siddiquee A N, Trans Nonferrous Met Soc China27 (2017) 2113.

    Article  CAS  Google Scholar 

  24. Zhang Q Z, Gong W B, and Liu W, Trans Nonferrous Met Soc China25 (2015) 1779.

    Article  CAS  Google Scholar 

  25. Cheepu M, Muthupandi V, and Che W S, in The Minerals, Metals & Materials Series, TMS 2019 148th Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Materials Series. Springer, Cham (2019) p 259.

  26. Cheepu M, and Susila P, Trans Indian Inst Met (2020).

  27. Cheepu M, Muthupandi V, Srinivas B, and Sivaprasad K, in Techno-Societal 2016, International Conference on Advanced Technologies for Societal Applications, (eds) Pawar P M, Ronge B P, Balasubramaniam R, and Seshabhattar S, ICATSA 2016, Springer, Cham (2018), p 709.

  28. Kong Y S, Cheepu M, and Park Y W, Trans Indian Inst Met (2020).

  29. Cheepu M, Muthupandi V, Venkateswarlu D, Srinivas B, and Che W S, Advanced Materials, (eds) Parinov I, Chang S H, and Gupta V, PHENMA 2017, Springer (2017) vol 207, p 267.

  30. Kong Y-S, Cheepu M, and Kim D-G, Trans Indian Inst Met (2020).

  31. Cheepu M, and Che W S, Trans Indian Inst Met (2020).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Susila.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

P. Susila: On-deputation to BIT campus, Anna University Trichy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheepu, M., Susila, P. Growth Rate of Intermetallics in Aluminum to Copper Dissimilar Welding. Trans Indian Inst Met 73, 1509–1514 (2020). https://doi.org/10.1007/s12666-020-01905-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-01905-z

Keywords

Navigation