Skip to main content
Log in

Chalcopyrite Leaching with Hydrogen Peroxide in Formic Acid Medium

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

This study is concerned with the leaching process of copper with hydrogen peroxide (H2O2) and formic acid (HCOOH) from the Küre chalcopyrite concentrate. All experiments were carried out in a leaching system equipped with an adjustable temperature shaker under atmospheric pressure. The needed oxygen was provided by H2O2 decomposition to achieve the oxidizing leaching medium. The parameters affecting leaching process, H2O2 concentration, HCOOH concentration, sulfuric acid (H2SO4) concentration, leaching time, liquid/solid ratio and stirring speed, were studied. The optimum experimental conditions were determined as leaching temperature 40 °C, leaching time 120 min, H2O2 concentration 1.2 M, HCOOH concentration 3 M and stirring speed 500 rpm. It was observed that there was no positive effect of sulfuric acid (H2SO4) concentration on the metal extraction. In addition, the percentage of copper passing to solution was increased from 7.83 to 62.37% as a result of the liquid/solid ratio increasing from 2.0 to 100, respectively. Consequently, formic acid could be used as an alternative and organic leaching agent in the selective leaching of chalcopyrite and even for leaching processes of the other oxidized and sulfured ores containing precious metals.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Davenport W G, King M J, Schlesinger M E, and Biswas A K, Extractive Metallurgy of Copper, Elsevier, Amsterdam (2002).

    Google Scholar 

  2. Zhao H, Hu M, Li Y, Shan Z H U, Qin W, Qiu G, and Jun W, Trans Nonferrous Met Soc China25 (2015) 303.

    CAS  Google Scholar 

  3. Deng J, Wen S, Yin Q, Wu D, and Sun Q, J Taiwan Inst Chem Eng71 (2017) 20. https://doi.org/10.1016/j.jtice.2016.11.013.

    Article  CAS  Google Scholar 

  4. Bogdanović G D, Stanković V D, Trumić M S, Antić D V, and Trumić M Ž, J Min Metall A Min52 (2016) 45.

    Google Scholar 

  5. Arzutug M E, Kocakerim M M, and Çopur M, Ind Eng Chem Res43 (2004) 4118.

    CAS  Google Scholar 

  6. Künkül A, Gülezgin A, and Demirkiran N, Chem Ind Chem Eng Q19 (2013) 25. https://doi.org/10.2298/ciceq120113039k.

    Article  CAS  Google Scholar 

  7. Muchez P, and Corbella M, J Geochem Explor118 (2012) 38. https://doi.org/10.1016/j.gexplo.2012.04.006.

    Article  CAS  Google Scholar 

  8. Córdoba E M, Muñoz J A, Blázquez M L, González F, and Ballester A, Hydrometallurgy93 (2008) 81.

    Google Scholar 

  9. Dreisinger D, Hydrometallurgy83 (2006) 10.

    CAS  Google Scholar 

  10. Qiu T-S, Nie G-H, Wang J-F, and Cui L-F, Trans Nonferrous Met Soc China17 (2007) 418.

    CAS  Google Scholar 

  11. Pan H, Yang H, Tong L, Zhong C, and Zhao Y, Trans Nonferrous Met Soc China22 (2012) 2255.

    CAS  Google Scholar 

  12. Antonijević M M, and Bogdanović G D, Hydrometallurgy73 (2004) 245.

    Google Scholar 

  13. Klauber C, Int J Miner Process86 (2008) 1.

    CAS  Google Scholar 

  14. Rodrıguez Y, Ballester A, Blazquez M L, Gonzalez F, and Munoz J A, Hydrometallurgy71 (2003) 47.

    Google Scholar 

  15. McDonald R G, and Muir D M, Hydrometallurgy86 (2007) 191.

    CAS  Google Scholar 

  16. Khoshkhoo M, Dopson M, Engström F, and Sandström Å, Miner Eng100 (2017) 9.

    CAS  Google Scholar 

  17. Córdoba E M, Muñoz J A, Blázquez M L, González F, and Ballester A, Hydrometallurgy93 (2008) 106.

    Google Scholar 

  18. Watling H R, Hydrometallurgy140 (2013) 163.

    CAS  Google Scholar 

  19. Kinnunen P H, and Puhakka J A, J Chem Technol Biotechnol Int Res Process Environ Clean Technol 79 (2004) 830.

    CAS  Google Scholar 

  20. Sokić M, Marković B, Stanković S, Kamberović Ž, Štrbac N, Manojlović V, and Petronijević N, Metals9 (2019) 1.

    Google Scholar 

  21. Y J Xian, S M Wen, J S Deng, J Liu, and Q Nie, Can Metall Q51 (2012) 133.

    CAS  Google Scholar 

  22. Nabizadeh A, and Aghazadeh V, Hydrometallurgy152 (2015) 61.

    CAS  Google Scholar 

  23. Watling H R, Hydrometallurgy146 (2014) 96.

    CAS  Google Scholar 

  24. Dutrizac J E, Hydrometallurgy23 (1990) 153.

    CAS  Google Scholar 

  25. Turkmen Y, and Kaya E, J Ore Dress11 (2009) 16.

    Google Scholar 

  26. Nicol M, Miki H, and Velásquez-Yévenes L, Hydrometallurgy103 (2010) 86.

    CAS  Google Scholar 

  27. Ahn J, Wu J, and Lee J, Hydrometallurgy187 (2019) 54.

    CAS  Google Scholar 

  28. B C Tanda, J J Eksteen, E A Oraby, and G M O’Connor, Miner Eng135 (2019) 118.

    CAS  Google Scholar 

  29. Larba R, Boukerche I, Alane N, Habbache N, Djerad S, and Tifouti L, Hydrometallurgy134–135 (2013) 117. https://doi.org/10.1016/j.hydromet.2013.02.002.

    Article  CAS  Google Scholar 

  30. Ghasemi S M S, and Azizi A, J Min Environ8 (2016) 12. https://doi.org/10.22044/jme.2016.767.

    Article  Google Scholar 

  31. Havlik T, and Skrobian M, Can Metall Q29 (1990) 133.

    CAS  Google Scholar 

  32. J Wu, J Ahn, and J Lee, Korean J Met Mater57 (2019) 245.

    CAS  Google Scholar 

  33. M M Antonijević, Z Janković, and M Dimitrijević, Hydrometallurgy35 (1994) 187.

    Google Scholar 

  34. T Agacayak, A Aras, S Aydogan, and M Erdemoglu, Physicochem Probl Miner Process50 (2014) 657.

    CAS  Google Scholar 

  35. Turan M D, and Altundoğan H S, Metall Mater Trans B44 (2013) 809.

    CAS  Google Scholar 

  36. Ruiz-Sánchez Á, and Lapidus G T, Hydrometallurgy169 (2017) 192.

    Google Scholar 

  37. Hu J, Tian G, Zi F, and Hu X, Hydrometallurgy169 (2017) 1.

    CAS  Google Scholar 

  38. Adebayo A O, Ipinmoroti K O, and Ajayi O O, Chem Biochem Eng Q17 (2003) 213.

    CAS  Google Scholar 

  39. Turan M D, Sari Z A, and Miller J D, Trans Nonferrous Met Soc China27 (2017) 1404.

    CAS  Google Scholar 

  40. Mahajan V, Misra M, Zhong K, and Fuerstenau M C, Miner Eng20 (2007) 670.

    CAS  Google Scholar 

  41. Petrovic S J, Bogdanovic G D, and Antonijevic M M, Trans Nonferrous Met Soc China28 (2018) 1444.

    CAS  Google Scholar 

  42. Mendham J, Vogels Textbook of Quantitative Chemical Analysis, Pearson Education India, Bengaluru (2006).

    Google Scholar 

  43. Olubambi P A, and Potgieter J H, Min Process Ext Met Rev30 (2009) 327.

    CAS  Google Scholar 

  44. Misra M, and Fuerstenau M C, Min Eng18 (2005) 293.

    CAS  Google Scholar 

  45. Solis-Marcial O J, and Lapidus G T, Hydrometallurgy131 (2013) 120.

    Google Scholar 

  46. Arslanoğlu H, and Yaraş A, Petrol Sci Technol37 (2019) 2081.

    Google Scholar 

  47. Yaraş A, and Arslanoğlu H, Can Metall Q57 (2018) 319.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Arslanoğlu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arslanoğlu, H., Yaraş, A. Chalcopyrite Leaching with Hydrogen Peroxide in Formic Acid Medium. Trans Indian Inst Met 73, 785–792 (2020). https://doi.org/10.1007/s12666-020-01896-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-01896-x

Keywords

Navigation