Skip to main content
Log in

Microstructure and Property Evolution for Hot-Rolled and Cold-Rolled Austenitic Stainless Steel 316L

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Grain boundary character distribution plays an important role in determining the functional and mechanical properties of polycrystalline materials. The aim of this work was to achieve improved coincident site lattice (CSL) fraction without increasing low angle grain boundary (LAGB) proportion. We utilized single-step thermo-mechanical processing route involving rolling followed by short heat treatment and compared the effect of rolling temperature. Our results indicated that rolling at elevated temperature led to significant increase in the fraction of special boundaries while keeping the fraction of LAGB very low, as desired. We conducted thermal stability of our sample-conditions at elevated temperatures for various lengths of time and found the microstructure of the samples to be stable up to 1000 °C. This study showed that even commercially suitable process (single step processing with short heat treatment duration) could lead to microstructure with considerable increase in CSL boundaries fraction, improved hardness values and good thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ashby M F, Material Selection in Mechanical Design, Elsevier Ltd., Amsterdam (2011) p 497.

  2. Erb U, Gleiter H, and Schwitzgebel G, Acta Metall Mater 30 (1982) 1377.

    Article  Google Scholar 

  3. Hong H, Rho B S, and Nam S W, Mater Sci Eng 318A (2001) 285.

    Article  Google Scholar 

  4. Bi H Y, Kokawa H, Wang Z J, Shimada M, and Sato Y S, Scr Mater 49 (2003) 219.

    Article  Google Scholar 

  5. Watanabe T, Res Mech 11 (1984) 47.

    Google Scholar 

  6. Palumbo G, King P J, Aust K T, Erb U, and Lichtenberger P C, Scr Metall Mater 25 (1991) 1775.

    Article  Google Scholar 

  7. Cheung C, Erb U, and Palumbo G, Mater Sci Eng 185A (1994) 39.

    Article  Google Scholar 

  8. Randle V, Acta Mater 52 (2004) 4067.

    Article  Google Scholar 

  9. Watanabe T, Fujii H, Oikawa H, and Arai K I, Acta Metall Mater 37 (1989) 941.

    Article  Google Scholar 

  10. Lin H, and Pope D P, Mater Sci Eng 192–193A (1995) 394.

  11. Gertsman V Y, and Bruemmer S M, Acta Mater 49 (2001) 1589.

    Article  Google Scholar 

  12. Palumbo G, Lehockey E M, and Lin P, JOM 50 (1998) 40.

    Article  Google Scholar 

  13. Randle V, and Davies H, Metall Mater Trans 33A (2002) 1853.

    Article  Google Scholar 

  14. Qian M, and Lippold J C, Acta Mater 51 (2003) 3351.

    Article  Google Scholar 

  15. Don J, and Majumdar S, Acta Metall Mater 34 (1986) 961.

    Article  Google Scholar 

  16. Thaveeprungsriporn V, and Was G S, Metall Mater Trans 28A (1997) 2101.

    Article  Google Scholar 

  17. Lehockey E M, Palumbo G, and Lin P, Scr Mater 39 (1998) 353.

    Article  Google Scholar 

  18. Lin P, Palumbo G, Erb U, and Aust K T, Scr Metall Mater 33 (1995) 1387.

    Article  Google Scholar 

  19. Shimada M, Kokawa H, Wang Z J, Sato Y S, and Karibe I, Acta Mater 50 (2002) 2331.

    Article  Google Scholar 

  20. King W E, and Schwartz A J, Scr Mater 38 (1998) 449.

    Article  Google Scholar 

  21. Was G S, and Thaveeprungsriporn V, JOM 50 (1998) 44.

    Article  Google Scholar 

  22. Vaid A, Mittal K, Sahu S, and Shekhar S, Trans Indian Inst Met (2016). doi:10.1007/s12666-016-0834-7.

  23. Winning M, Rollett A D, Gottstein G, Srolovitz D J, Lim A, and Shvindlerman L S, Philos Mag 90 (2010) 3107.

    Article  Google Scholar 

  24. Michiuchi M, Kokawa H, Wang Z J, Sato Y S, and Sakai K, Acta Mater 54 (2006) 5179.

    Article  Google Scholar 

  25. ASTM international standards A240/A240 M, p 4.

  26. Schaeffler A L, Welding J 26 (1947) 601.

    Google Scholar 

  27. Chowdhury S G, Das S, and De P K, Acta Mater 53 (2005) 3951.

    Article  Google Scholar 

  28. Brandon D G, Acta Metall Mater 14 (1966) 1479.

    Article  Google Scholar 

  29. Karthikeyan T, Dash M K, Saroja S, and Vijayalakshmi M, Metall Mater Trans 44A (2013) 1673.

    Article  Google Scholar 

  30. Randle V, Acta Mater 47 (1999) 4187.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashank Shekhar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, N.K., Shekhar, S. Microstructure and Property Evolution for Hot-Rolled and Cold-Rolled Austenitic Stainless Steel 316L. Trans Indian Inst Met 70, 1277–1284 (2017). https://doi.org/10.1007/s12666-016-0926-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-016-0926-4

Keywords

Navigation