Skip to main content

Advertisement

Log in

Microstructure and Mechanical Behavior of X90 Bend Using Local Induction Bending

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The microstructure and mechanical properties was studied for API (American Petroleum Institute) X90 pipeline steel bend, which was formed by local induction heat. It was found that X90 pipeline steel parent microstructure consisted of quasi-polygonal ferrite, granular bainite and a small amount of M/A constituents, which provided a good mechanical property. The yield strength, tensile strength, and yield ratio was 786, 876 MPa, 0.90, respectively. After local induction bending, strain-induced phase transition behavior occurred within the deformation zone. The neutral axis position was almost free from force, for quenching-tempering microstructure with small grains. Compared to the parent pipe, the strength decreased after local induction bending. At −10 °C, the Charpy impact absorbed energy was higher, which showed good toughness. In addition, the ductile–brittle transition temperature was studied during −20 ~ −40 °C in outer arc side. At −60 °C, the impact absorbed energy was 27 J, which was not suitable for a pipeline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. API Specification 5L, Specification for line pipe, 45rd (edn), American Petroleum Institute. (2013), p. 32.

  2. Zhao W, Wang W, Chen S, and Qu J, Mater Sci Eng A 528 (2011) 7417.

    Article  Google Scholar 

  3. Fazackerley W J, Manuel P A, and Christensen L, in Microalloyed steels for the oil and gas industry, TMS 2006.

  4. Fukuda N, Yatabe H, and Masuda T, in Proceedings of the 21th International Conference on Offshore and Mechanics and Arctics Engineering, Oslo, Norway, OMAE2002-28210, 2002.

  5. Zhong H, J Mater Process Technol 91 (1999) 71.

    Article  Google Scholar 

  6. Lee H-W, Bae J-H, and Kim M-S, Int J Precis Eng Manuf 6 (2011) 1051.

    Article  Google Scholar 

  7. Xun W, Jie Z, and Qiang L, Procedia Eng 81 (2014) 2255.

    Article  Google Scholar 

  8. Zhong H, J Mater Process Technol 102 (2000) 103.

    Article  Google Scholar 

  9. Collie G J, and Black I, JMEPEG 20 (2011) 90.

    Article  Google Scholar 

  10. ZuTang W, and Zhong H, J Mater Process Technol 21 (1990) 275.

    Article  Google Scholar 

  11. Kathayat T, Hill T, Goyal R K, Dhar S, in Offshore Technology Conference (2012).

  12. Makovetskii A N, and Mirzaev D A, Phys Met Metallogr 110 (2010) 398.

    Article  Google Scholar 

  13. Kondo K, Arai Y, Hirata H, Hamada M, Kitoshio K, Hisamune N, and Murase T, in Proceedings of the Biennial International Pipeline Conference, vol. 3, IPC, (2009) 49.

  14. Wang X, Xiao F-r, Fu Y-h, Chena X-w, and Liao B, Mater Sci Eng A 530 (2011) 539.

    Article  Google Scholar 

  15. Xu W, Liao B, Wu D Y, Han X, and Zhang Y, J Iron Steel Res Int 12 (2014) 1129.

    Article  Google Scholar 

  16. Ahn S T, Kim D S, and Nam W J, J Mater Process Technol 160 (2005) 54.

    Article  Google Scholar 

  17. Takahashi N, Shitamoto H, and Fujita S, Proceedings of the Nineteenth International Offshore and Polar Engineering Conference 7 (2009) 21.

    Google Scholar 

  18. Zhou T, Yu H, Hu J, and Wang S, Mater Sci Eng A 615 (2014) 436.

    Article  Google Scholar 

  19. Annual Book of ASTM Standards, ASTM Designation, E8 and E23, vol. 03.01, Philadelphia, PA, (1995) 142.

  20. Beladi H, Kelly GL, and Hodgson PD, Int Mater Rev 55 (2007) 14.

    Article  Google Scholar 

  21. Sun L, Muszka K, Wynne B P, and Palmiere E J, Acta Mater 66 (2014) 132.

    Article  Google Scholar 

  22. Hu J, Mater Sci Eng A 607 (2014) 122.

    Article  Google Scholar 

  23. Hemmerich E, Rolfe B, Hodgson P D, and Weissa M, Mater Sci Eng A 528 (2011) 3302.

    Article  Google Scholar 

  24. Hua J, Du L -X, Wang J -J, Xie H, Gao C -R, and Misra R D K, Mater Sci Eng A 587 (2013) 197.

    Article  Google Scholar 

  25. Guoa A, Misraa R D K, Xu J, Guo B, and Jansto S G, Mater Sci Eng A 527 (2010) 3886.

    Article  Google Scholar 

  26. Bott I S, Vieira A A H, de Souza L F G, and Rios P R, Mater Sci Forum 638 (2010) 3146.

    Article  Google Scholar 

  27. Soliman M, and Palkowski H, Mater Des 88 (2015) 759.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Wang, L., Jiang, Y. et al. Microstructure and Mechanical Behavior of X90 Bend Using Local Induction Bending. Trans Indian Inst Met 70, 115–124 (2017). https://doi.org/10.1007/s12666-016-0866-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-016-0866-z

Keywords

Navigation