Skip to main content
Log in

Ta/Zr-Alloyed V–Cr–Ti Alloys via a Cluster-Plus-Glue-Atom Model for BCC Solid Solutions

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

A cluster formula of [M − V14]M1 was formed for vanadium alloys based on a cluster-plus-glue-atom model for BCC solid solutions, where the clusters [M − V14] were centered by one solute M and surrounded by fourteen solvent atoms V, and M could also be served as a glue atom to link clusters. The [M − V14]M1 formula with M = V1/3Cr1/3Ti1/3, an equal-molar combination of V, Cr and Ti, corresponded to the typical V–4Cr–4Ti alloy (wt.%). Based on this formula, a series of new alloys with Ta and Zr substitution for V and Ti respectively in M, were designed and molded into ϕ3 mm rods by copper-mold suction-cast method. These alloys were solid-solutioned at 1273 K for 2 h followed by water-quenching. For Zr-added alloys, the second phase V2Zr was prone to be precipitated, that made alloys much brittle and worse corrosion-resistant in Cl solution. While Ta-alloyed alloys exhibited a single BCC structure, the Vickers hardness HV of alloys were enhanced obviously. Among them, the Ta-added alloy with M = Ta1/3Cr1/3Ti1/3 (V79.21Ta13.4Cr3.85Ti3.54 wt.%) displayed both higher microhardness and better corrosion-resistance in Cl solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Smith D L, Loomis B A, Diercks D R, J Nucl Mater, 135 (1985) 125.

    Article  Google Scholar 

  2. Smith D L, Chung H M, Loomis B A, Matsui H, Votinov S, Witzenburg W Van, Fusion Eng Des, 29 (1995) 399.

    Article  Google Scholar 

  3. Chung H M, Loomis B A, Smith D L, J Nucl Mater, 239 (1996) 139.

    Article  Google Scholar 

  4. Smith D L, Chung H M, Matsui H, Rowcliffe A F, Fusion Eng Des, 41 (1998) 7.

    Article  Google Scholar 

  5. Zinkle S J, Matsui H, Smith D L, Rowcliffe A F, Osch E Van, Abe K, Kazakov V A, J Nucl Mater, 258 (1998) 205.

    Article  Google Scholar 

  6. Kurtz R J, Abe K, Chernov V M, Hoelzer D T, Matsui H, Muroga T, Odette G R, J Nucl Mater, 329-333 (2004) 47.

    Article  Google Scholar 

  7. Satou M, Chuto T, Abe K, J Nucl Mater, 283-287 (2000) 367.

    Article  Google Scholar 

  8. Chen J M, Xu Z Y, Yang L, J Nucl Mater, 307311 (2002) 566.

    Article  Google Scholar 

  9. Chen J M, Muroga T, Qiu S Y, Nagasaka T, Huang W G, Tu M J, Chen Y, Xu Y, Xu Z Y, J Nucl Mater, 329333 (2004) 401.

    Article  Google Scholar 

  10. Fukumoto K, Morimura T, Tanaka T, Kimura A, Abe K, Takahashi H, Matsui H, J Nucl Mater, 239 (1996) 170.

    Article  Google Scholar 

  11. Muroga T, Nagasaka T, Abe K, Chernov V M, Matsui H, Smith D L, Xu Z Y, Zinkle S J, J Nucl Mater, 307311 (2002) 547.

    Article  Google Scholar 

  12. Kurishita H, Kuwabara T, Hasegawa M, Kobayashi S, Nakai K, J Nucl Mater, 343 (2005) 318.

    Article  Google Scholar 

  13. Dong C, Wang Q, Qiang J B, Wang Y M, Jiang N, Han G, Li Y H, Wu J, Xia J H, J Phys D: Appl Phys, 40 (2007) R273.

    Article  Google Scholar 

  14. Li B Z, Wang Q, Wang Y M, Li C Y, Qiang J B, Ji C J, Dong C, Metall Mater Trans A, 43 (2012) 544.

    Article  Google Scholar 

  15. Ma R T, Hao C P, Wang Q, Ren M F, Wang Y M, Dong C, Acta Metall Sin, 46 (2010) 1034.

    Article  Google Scholar 

  16. Hao C P, Wang Q, Ma R T, Wang Y M, Qiang J B, Dong C, Acta Phys Sin, 60 (2011) 116101.

    Google Scholar 

  17. Wang Q, Zha Q F, Liu E X, Dong C, Wang X J, Tan C X, Ji C J, Acta Metall Sin, 48 (2010) 1201.

    Article  Google Scholar 

  18. Wang Q, Ji C J, Wang Y M, Qiang J B, Dong C, Metall Mater Trans A, 44 (2013) 1872.

    Article  Google Scholar 

  19. Pang C, Wang Q, Zhang R Q, Li Q, Dai X, Dong C, Liaw P K, Mater Sci Eng A, 626 (2015) 369.

    Article  Google Scholar 

  20. Dupouy J M, Averbach B L, Acta Metall, 9 (1961) 755.

    Article  Google Scholar 

  21. Inden G, Acta Metall, 22 (1974) 945.

    Article  Google Scholar 

  22. Morinaga M, Yukawa N, Adachi H, J Phys F: Met Phys, 15 (1985) 1071.

    Article  Google Scholar 

  23. Singh J, Singh P, Rattan S K, Prakash S, Phys Rev B, 49 (1994) 932.

    Article  Google Scholar 

  24. Sharma H, Prakash S, Pramana, J Phys, 68 (2007) 655.

    Google Scholar 

  25. Takeuchi A, Inoue A, Mater Trans, 41 (2000) 1372.

    Article  Google Scholar 

  26. Zhang Y, Zuo T T, Tang Z, Gao M C, Dahmen K A, Liaw P K, Lu Z P, Prog Mater Sci, 61 (2014) 1.

    Article  Google Scholar 

  27. Muroga T, Nagasaka T, Iiyoshi A, Kawabata A, Sakurai S, Sakata M, J Nucl Mater, 283287 (2000) 711.

    Article  Google Scholar 

  28. Samsonov G V, Handbook of the Physicochemical Properties of The Elements. IFI-Plenum, New York (1968).

    Book  Google Scholar 

Download references

Acknowledgments

The present work was financially supported by the National Natural Science Foundation of China (Nos. 11174044, 51131002 and 51171035), the International Science and Technology Cooperation Program of China (No. 2015DFR60370), and the Fundamental Research Funds for the Central Universities (No. DUT14LAB12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, C., Wang, Q., Che, J.D. et al. Ta/Zr-Alloyed V–Cr–Ti Alloys via a Cluster-Plus-Glue-Atom Model for BCC Solid Solutions. Trans Indian Inst Met 69, 1557–1562 (2016). https://doi.org/10.1007/s12666-015-0729-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-015-0729-z

Keywords

Navigation