Skip to main content
Log in

Optimization of Friction Stir Extrusion (FSE) Parameters Through Taguchi Technique

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this study, a novel friction stir extrusion (FSE) process is investigated for fabrication of fully-consolidated wires. The process parameters of rotational speed (RS), plunge rate (PR), and extrusion hole size are optimized using the Taguchi L8 orthogonal design of experiments. The optimum process parameters are determined with reference to the average grain size of the wire. The analysis of variance shows that the RS of plunge die is the most dominant factor in deciding the soundness of joint, while PR also plays a significant role. The microstructural studies reveal that initial grains of Mg ingot undergoes significant refinement in the specimens produced by the FSE process. Mechanical tests show that almost all recycled specimens can achieve higher strength and elongation than parent material at room temperature. This study shows that defect free, high quality wires can be produced using a proper combination of process parameters and recommends parameters for producing the best wire properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nakanishi M, Mabuchi M, Saito N, Nakamura M, and K. Higashi, J Mater Sci Lett 17 (1998) 2003.

    Article  Google Scholar 

  2. Chino Y, and Hoshika T, Mabuchi M, Mater Sci Eng A, 435 (2006) 275.

    Article  Google Scholar 

  3. Peng T, Wang Q, and Lin J, Mater Sci Eng A 516 (2009) 23.

    Article  Google Scholar 

  4. Hu M, Ji Z, Chen X, Wang Q, and Ding W, Trans Nonferrous Met Soc China 22 (2012) s68.

    Article  Google Scholar 

  5. Zhang T, Ji Z and Wu S, Mater Des 32 (2011) 2742.

    Article  Google Scholar 

  6. Shanthi M, Lim C, and Lu L, Tribol Int 40 (2007) 335.

    Article  Google Scholar 

  7. Ji Z, Wen L, and Li X, J Mater Process Technol 209 (2009) 2128.

    Article  Google Scholar 

  8. Chino Y, Kishihara R, Shimojima K, Hosokawa H, Yamada Y, Wen CE, Iwasaki H, and Mabuchi M, Mater Trans 43 (2002)2437.

    Article  Google Scholar 

  9. Wu S, Ji Z, and Zhang T, J Mater Process Technol 209 (2009) 5319.

    Article  Google Scholar 

  10. Thomas W M, Nicholas E D, and Jones SB, Friction extrusion, metal working, US Patent # 5,262,123. Application No. 9125978.9, 1991 (1993).

  11. Mishra R S, and Ma Z, Mater Sci Eng: R: Rep 50 (2005) 1.

    Article  Google Scholar 

  12. Pellegrino J, Margolis N, Justiniano M, Miller M and Thedki A, Energ, Inc E3M 169 (2004).

  13. Das S K, Green J A, Kaufman J G, Emadi D, and Mahfoud M, JOM 62 (2010) 23.

    Article  Google Scholar 

  14. Tang W, and Reynolds A, J Mater Process Technol 210 (2010) 2231.

    Article  Google Scholar 

  15. Behnagh R A, Mahdavinejad R, Yavari A, Abdollahi M, and Narvan M, Metall Mater Trans B (2014) 1.

  16. Jayaraman M, Sivasubramanian R, and Balasubramanian V, J Mater Sci Technol 25 (2009) 655.

    Google Scholar 

  17. Ghosh M, Kumar K, Kailas S, and Ray A K, Mater Des 31 (2010). 3033.

    Article  Google Scholar 

  18. Lakshminarayanan A, and Balasubramanian V, Trans Nonferrous Metals Soc China 18 (2008) 548.

    Article  Google Scholar 

  19. Akbarzadeh A, Kouravand S, and Imani B M, J Optim Theory Appl 157 (2013) 188.

    Article  Google Scholar 

  20. Sathiya P, Jaleel M A, Katherasan D, and Shanmugarajan B, Opt Laser Technol 43 (2011) 660.

    Article  Google Scholar 

  21. Bilici M K, Yükler A İ, and Kurtulmuş M, Mater Des 32 (2011) 4074.

    Article  Google Scholar 

  22. Yin Y, Ikuta A, and North T, Mater Des 31 (2010) 4764.

    Article  Google Scholar 

  23. U. G. A. G. I. Taguchijeve, V -T P FSW, Application of grey relation analysis (GRA) and Taguchi method for the parametric optimization of friction stir welding (FSW) process, Mater Tehnol 44 (2010) 205.

  24. Bozkurt Y, Mater Des 35 (2012) 440.

    Article  Google Scholar 

  25. Lin T -R, J Mater Process Technol 127 (2002) 1.

    Article  Google Scholar 

  26. ASTM Standard #E407-07, Standard test methods for microetching, 2004.

  27. ASTM Standard #E3-11, Standard test methods for Sample grounding and polishing, 2004.

  28. ASTM Standard #E8M-E384-11, Standard test methods for determining average grainsize 2004.

  29. ASTM Standard #E290-92, Standard test method for bend testing of Material for ductility 2009.

  30. Asadi P, Besharati Givi M K, and Faraji G, Mater Manuf Process 25 (2010) 1219.

    Article  Google Scholar 

  31. Commin L, Dumont M, Masse J E, and Barrallier L, Acta Mater 57 (2009) 326.

    Article  Google Scholar 

  32. Scialpi A, Mater Des 28 (2007) 1124.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Abdi Behnagh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, M.A., Behnagh, R.A., Narvan, M. et al. Optimization of Friction Stir Extrusion (FSE) Parameters Through Taguchi Technique. Trans Indian Inst Met 69, 1351–1357 (2016). https://doi.org/10.1007/s12666-015-0686-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-015-0686-6

Keywords

Navigation