Skip to main content

Advertisement

Log in

Effects of Processing Parameters on Microstructure and Mechanical Properties of Rheomolded AZ91D Magnesium Alloy

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

An advanced rheomolder, equipped with a thin-walled phone cover mold, was introduced and used to manufacture the AZ91D magnesium alloy. Effects of different processing parameters including pouring temperature, cylinder temperature and injection velocity on the microstructure and mechanical properties were investigated. The results showed that, with the decrease of pouring temperature or the increase of injection velocity, the size of α 1 -Mg decreases while the sphericity increases, and the porosity fraction reduces, which raise mechanical properties of rheomolded AZ91D. As the cylinder temperature decreases, the size of α 1 -Mg decreases and the sphericity increases initially and then remains relatively unchanged while the solid fraction increases continuously. Also, the cylinder temperature has a significant effect on mechanical properties of rheomolded AZ91D and the highest mechanical property is obtained at a cylinder temperature of 555 °C. The optimal rheomolded AZ91D with tensile strength of 273 MPa and elongation of 7.2 % were obtained at the pouring temperature of 600 °C, injection velocity of 2.1 m/s and cylinder temperature of 555 °C. Compared with high pressure die-casting, the tensile strength and elongation were increased by 22.4 and 213 %, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Jiang J F, Wang Y, Li Y F, Shan W W, and Luo S J, Mater Des, 37 (2012) 202.

    Article  Google Scholar 

  2. Boby A, Pillai U T S, and Pai B C, Trans Indian Inst Met, 66 (2013) 105.

    Article  Google Scholar 

  3. Tzamtzis S, Zhang H, Xia M, Hari Babu N, and Fan Z, Mater Sci Eng A, 528 (2011) 2664.

    Article  Google Scholar 

  4. Matsumoto R, Trans Nonferrous Met Soc China, 20 (2010) 1275.

    Article  Google Scholar 

  5. Zhao Z D, Chen Q, Chao H Y, and Huang S H, Mater Des, 3 (2010) 1906.

    Article  Google Scholar 

  6. Jiang J F, Wang Y, Chen G, Liu J, Li Y S, and Luo S J, Mater Des, 40 (2012) 541.

    Article  Google Scholar 

  7. Polmear L J, Mater Trans, 37 (1996) 12.

    Article  Google Scholar 

  8. Yang L Q, Kang Y L, Zhang F, and Xu J, Trans Nonferrous Met Soc China, 20 (2010) 862.

    Article  Google Scholar 

  9. Flemings M C, Metal Trans A, 22 (1991) 957.

    Article  Google Scholar 

  10. Czerwinski F, Metall Mater Trans A, 33 (2002) 2963.

    Article  Google Scholar 

  11. Zhang Y F, Liu Y B, and Cao Z Y, J Mater Process Technol, 209 (2009) 1375.

    Article  Google Scholar 

  12. Ghosh D, Kang K, and Roemer J G, in Advances in Production and Fabrication of Light Metals and Metal Matrix Composites, (eds) Avedesian M M, Larouche L J, and Masounave J, Montreal (1992), p 399.

  13. Tsukeda T, Takeya K, and Saito K, J Japan Inst of Light Metals, 47 (1999) 287.

    Article  Google Scholar 

  14. Czerwinski F, Acta Mater, 53 (2005) 1973.

    Article  Google Scholar 

  15. Czerwinski F, Mater Sci Eng A, 392 (2005) 51.

    Article  Google Scholar 

  16. Cui X P, The Research on the Microstructure and Process of Thixomolding AZ91D Magnesium Alloy, Ph D Thesis, University of Jilin, China (2006).

  17. Fan Z T, Huang N Y, Luo J R, and Wu S S, Spec Cast Nonferrous Alloys, 2 (2001) 22.

    Google Scholar 

  18. Yang L Q, Kang Y L, and Zhang F, Trans Nonferrous Met Soc China, 20 (2010) 966.

    Article  Google Scholar 

  19. Fan Z, Liu G, and Wang Y, J Mater Sci, 41 (2006) 3631.

    Article  Google Scholar 

  20. Wang Y, Xia M, Fan Z, Zhou X, and Thompson G E, Intermetallics, 18 (2010) 1863.

    Google Scholar 

  21. Koren Z, Rosenson H, Gutman E M, Unigovski Y B, and Eliezer A, J Light Met, 2 (2002) 81.

    Article  Google Scholar 

  22. Xia K, and Tausig G, Mater Sci Eng A, 246 (1998) 1.

    Article  Google Scholar 

  23. Dong J, Cui J X, and Le Q C, Mater Sci Eng A, 345 (2003) 234.

    Article  Google Scholar 

  24. Le Q C, Ou P, Wu Y D, Lu G M, Cui J Z, and Qiu Z X, Acta Metall Sin, 38 (2002) 219.

    Google Scholar 

  25. Czerwinski F, Zielinska-Lipiec A, and Pinet P J, Acta Mater, 49 (2001) 1225.

    Article  Google Scholar 

  26. Patel H A, Chen D L, and Bhole S D, J Alloys Compd, 496 (2010) 140.

    Article  Google Scholar 

  27. Galiev A M, and Kaibyshev R O, Phys Met Metall, 81 (1996) 451.

    Google Scholar 

  28. Ghosh D, Kang W, and Bach C, in Proceedings of the International Symposium on Recent Metallurgical Advances in Light metals Industries, (eds) Macewen S, and Gilardeau J P, Vancouver (1995), p 473.

Download references

Acknowledgments

The authors really appreciate the support from National Program on Key Basic Research Project of China (2011CB606302) and National High-tech R&D Program of China (2013AA031001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonglin Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, M., Kang, Y., Zhou, B. et al. Effects of Processing Parameters on Microstructure and Mechanical Properties of Rheomolded AZ91D Magnesium Alloy. Trans Indian Inst Met 69, 673–682 (2016). https://doi.org/10.1007/s12666-015-0538-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-015-0538-4

Keywords

Navigation