Skip to main content
Log in

Effectiveness of time-series analysis for thermal plume propagation assessment in an open-loop groundwater heat pump plant

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Thermal perturbation produced in the subsurface by open-loop groundwater heat pumps (GWHPs) represents a complex transport phenomenon that is affected by several factors, including intrinsic characteristics of the exploited aquifer, abstraction and reinjection well features, and the temporal dynamics of the accessed groundwater. Post-GWHP water may have become warmed or cooled before being reinjected into the aquifer, thereby creating a thermal plume, known as the thermal affected zone (TAZ), which can alter aquifer temperature. The TAZ is propagated mainly by advection, after which the plume tends to degrade via conductive heat transport and convection within moving water. Groundwater monitoring and multiparametric probes are used to check the dynamics of plume propagation and whether a system’s thermal plumes are generating unsuitable interference with wells, subsurface infrastructure, or land use. Analyses of time-series groundwater monitoring data can be used to monitor TAZ movement. In this paper, the thermal plume velocity was calculated by both an analytical solution and cross-correlation. Cross-correlation calculated between temperature measured in the reinjection well and control downstream piezometers can reveal plume dynamics and demonstrate the importance of advective transport in aquifer heat transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

[modified from Lo Russo and Taddia (2009)]

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Anderson MP (2005) Heat as a ground water tracer. Ground Water 43:951–968. https://doi.org/10.1111/j.1745-6584.2005.00052.x

    Article  Google Scholar 

  • Andrews CB (1978) The impact of the use of heat pumps on ground-water temperatures. Ground Water 16:437–443

    Article  Google Scholar 

  • Angelini P (1997) Correlation and spectral analysis of two hydrogeological systems in central Italy. Hydrol Sci J 42:425–438

    Article  Google Scholar 

  • Bally AW, Snelson S (1980) Realms and subsidence. Facts and principles of world petroleum occurrence. In: Miall AA (ed) Canadian Society of Petroleum Geologists Memoir vol 6, Calgary, p 9–94, ISBN: 13: 9780920230077$4

  • Banks D (2009) Thermogeological assessment of open-loop well-doublet schemes: a review and synthesis of analytical approaches. Hydrogeol J 17(5):1149–1155

    Article  Google Scholar 

  • Banks D (2012) An introduction to thermogeology: ground source heating and cooling. Hoboken, Wiley, New York, p 526

    Book  Google Scholar 

  • Bear J (1972) Dynamics of fluids in porous media, 10, 1st edn. American Elsevier Publishing Company Inc, New York, p 764 (ISBN: 10: 044400114X)

    Google Scholar 

  • Blum P, Campillo G, Munch W, Kolbel T (2010) CO2 savings of ground source heat pump systems-a regional analysis. Renew Energy 35:122–127. https://doi.org/10.1016/j.renene.2009.03.034.

    Article  Google Scholar 

  • Bodvarsson G (1972) Thermal problems in the siting of reinjection wells. Geothermics 1(2):63–66

    Article  Google Scholar 

  • Bonsignore G, Bortolami GC, Elter G, Montrasio A, Petrucci F, Ragni U, Sacchi R, Zanella E (1969) Note of the geological map of Italy at 1: 100,000 scale, sheet 56 e 57 “Torino” and “Vercelli”, 2nd edn. Serv. Geol. It., Roma (in Italian)

    Google Scholar 

  • Casasso A, Sethi R (2015) Modelling thermal recycling occuring in groundwater heat pumps (GWHPs). Renew Energy 77:86–93. https://doi.org/10.1016/j.renene.2014.12.003 (Elsevier)

    Article  Google Scholar 

  • De Marsily G (1986) Quantitative hydrogeology: groundwater hydrology for engineers, 1st edn. Academic Press, Orlando, p 440

    Google Scholar 

  • Fetter CW (1999) Contaminant hydrogeology, 2nd edn. Prentice-Hall, New-Jersey, p 500 (ISBN: 0-13-751215-5)

    Google Scholar 

  • Fiorillo F, Doglioni A (2010) The relation between karst spring discharge and rainfall by cross-correlation analysis (Campania, southern Italy). Hydrogeol J 18(8):1881–1895. https://doi.org/10.1007/s10040-010-0666-1

    Article  Google Scholar 

  • Gringarten AC, Sauty JP (1975) A theoretical study of heat extraction from aquifers with uniform regional flow. J Geophys Res 80(35):4956–4962

    Article  Google Scholar 

  • Hecht-Mendez J, Molina-Giraldo N, Blum P, Bayer P (2010) Evaluating MT3DMS for heat transport simulation of closed geothermal systems. Ground Water 48(5):741–756. https://doi.org/10.1111/j.1745-6584.2010.00678.x

    Article  Google Scholar 

  • Hoeh E, Cirpka OA (2006) Assessing hyporheic zone dynamics in two alluvial flood plains of the Southern Alps using water temperature and tracers. Hydrol Earth Syst Sci 10:553–563. https://doi.org/10.5194/hessd-3-335-2006

    Article  Google Scholar 

  • JSTP (1990) Thermophysical properties handbook. Japan society of thermophysical properties. Yokendo Co., Tokyo, p 489

    Google Scholar 

  • Larocque M, Mangin A, Razack M, Banton O (1998) Contribution of correlation and spectral analyses to the regional study of a large karst aquifer (Charente, France). J Hydrol 205:217–231. https://doi.org/10.1016/S0022-1694(97)00155-8

    Article  Google Scholar 

  • Lippmann MJ, Tsang CF (1980) Ground-water use or cooling: associated aquifer temperature changes. Ground Water 18:452–458

    Article  Google Scholar 

  • Lo Russo S, Civita MV (2010) Hydrogeological and thermal characterization of shallow aquifers in the plain sector of Piemonte region (NW Italy): implications for groundwater heat pumps diffusion. Environ Earth Sci 60:703–713. https://doi.org/10.1007/s12665-009-0208-0

    Article  Google Scholar 

  • Lo Russo S, Taddia G (2009) Groundwater in the urban environment: management needs and planning strategies. Am J Environ Sci 5(4):494–500. https://doi.org/10.3844/ajessp.2009.494.500 (Science Publications, ISSN: 1553-345X)

    Article  Google Scholar 

  • Lo Russo S, Taddia G (2010) Advective heat transport in an unconfined aquifer induced by the field injection of an open-loop groundwater heat pump. Am J Environ Sci 6(3):253–259. https://doi.org/10.3844/ajessp.2010.253.259

    Article  Google Scholar 

  • Lo Russo S, Taddia G, Verda V (2012) Development of the thermally affected zone (TAZ) around a ground water heat pump (GWHP) system: a sensitivity analysis. Geothermics 43:66–74. https://doi.org/10.1016/j.geothermics.2012.02.001

    Article  Google Scholar 

  • Lo Russo S, Gnavi L, Roccia E, Taddia G, Verda V (2014) Groundwater heat pump (GWHP) system modeling and thermal affected zone (TAZ) prediction reliability: influence of temporal variations in flow discharge and injection temperature. Geothermics 51:103–112. https://doi.org/10.1016/j.geothermics.2013.10.008

    Article  Google Scholar 

  • Lo Russo S, Amanzio G, Ghione R, De Maio M (2015) Recession hydrographs and time series analysis of springs monitoring data: application on porous and shallow aquifers in mountain areas (Aosta Valley). Environ Earth Sci 73(11):7415–7434. https://doi.org/10.1007/s12665-014-3916-z

    Article  Google Scholar 

  • Lo Russo S, Taddia G, Cerino Abdin E (2018) Modeling the effects of the variability of temperature-related dynamic viscosity on the thermal-affected zone of groundwater heat-pump systems. Hydrogeol J 26:1239–1247 (1–9 First Online:13 January 2018)

    Article  Google Scholar 

  • Mangin A (1984) Pour une meilleure connaissance des systemes hydrologiques a partir des analyses correlatoire et spectrale. J Hydrol 67:25–43. https://doi.org/10.1016/0022-1694(84)90230-0

    Article  Google Scholar 

  • Milnes E, Perrochet P (2013) Assessing the impact of thermal feedback and recycling in open-loop groundwater heat pump (GWHP) systems: a complementary design tool. Hydrogeol J 21:505–514

    Article  Google Scholar 

  • Padilla A, Pulido Bosch A (1995) Study of hydrographs of karstic aquifers by means of correlation and cross-spectral analysis. J Hydrol 168:73–89. https://doi.org/10.1016/00221694(94)02648-U

    Article  Google Scholar 

  • Palmer CD, Blowes DW, Frind EO, Molson JW (1992) Thermal energy storage in an unconfined aquifer: 1. Field injection experiment. Water Resour Res 28:2845–2856. https://doi.org/10.1029/92WR01471

    Article  Google Scholar 

  • Panagopoulos G, Lambrakis N (2006) The contribution of time series analysis to the study of the hydrodynamic characteristics of the karst systems: application on two typical karst aquifers of Greece (Trifi lia, Almyros Crete). J Hydrol 329: 368–376. https://doi.org/10.1016/j.jhydrol.2006.02.023

    Article  Google Scholar 

  • Park BH, Bae GO, Lee KK (2015) Importance of thermal dispersivity in designing groundwater heat pump (GWHP) system: Field and numerical study. Renew Energy 83:270–279

    Article  Google Scholar 

  • Regione Piemonte (2005) Hydrogeology of the Piedmontese plain, Mariogros Industrie Grafiche S.p.A. (in Italian)

  • Regione Piemonte (2007) Water protection plan. D.C.R. n. 117-10731, Turin, Italy (in Italian) http://www.regione.piemonte.it/acqua/pianoditutela/pta/aree/ai14/pdf/index.htm. Accessed 1 June 2017

  • Sauty JP (1981) Du comportement thermique des réservoirs aquifères exploité pour le stockage d’eau chaude ou la géothermie basse enthalpie. Thèse d’Etat ès Sc. Phys., Grenoble

  • Stauffer F, Bayer P, Blum P, Giraldo NM, Kinzelbach W (2014) Thermal use of shallow groundwater. CRC Press, Boca Raton, p 287 (ISBN 9781138077850)

    Google Scholar 

  • Sterrett RJ (2007) Groundwater and wells, 3rd edn. Johnson Screens, New Brighton, p 812 (ISBN: 0978779304)

    Google Scholar 

  • Warner DL, Algan U (1984) Thermal impact of residential ground-water heat pumps. Groundwater 22(1):6–12

    Article  Google Scholar 

  • Yu Z, Zhang Y, Hao S, Zhang J, Li X, Cai B, Xu T (2016) Numerical study based on one-year monitoring data of groundwater-source heat pumps primarily for heating:a case in Tangshan, China. Environ Earth Sci 75:1070. https://doi.org/10.1007/s12665-016-5868-y

    Article  Google Scholar 

  • Zhu K, Bayer P, Grathwohl P, Blum P (2015) Groundwater temperature evolution in the subsurface urban heat island of Cologne. Germany Hydrol Process 29:965–978. https://doi.org/10.1002/hyp.10209

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Lo Russo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lo Russo, S., Taddia, G., Dabove, P. et al. Effectiveness of time-series analysis for thermal plume propagation assessment in an open-loop groundwater heat pump plant. Environ Earth Sci 77, 647 (2018). https://doi.org/10.1007/s12665-018-7820-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-018-7820-9

Keywords

Navigation