Skip to main content
Log in

Changes in event number and duration of rain types over Mongolia from 1981 to 2014

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

In addition to the total amount of precipitation, the number, type and duration of rain events play a critical role in hydrological cycle, land surface processes, vegetation and land cover dynamics in such semi-arid regions as Mongolia where water availability is the main determinant of ecosystem functioning and services. However, only a limited number of studies have so far focused on certain aspects of changes in rain types and durations for Mongolia as a whole, while a relatively large number of studies have examined trends observed in total annual precipitation for the country. In the present study, we evaluated changes in not only the amount, but also in the number and total duration of rain types using the data on start-to-end times of all rain events from 55 meteorological stations scattered throughout Mongolia between 1981 and 2014, a period for which this type of analysis was made possible for the first time. Our study confirms that there has been no significant change in the amount of mean summer precipitation for almost all parts of the country for the last 34 years, with only a few stations showing a significant decreasing trend. In terms of rain types, the number and duration of convective rains have increased, while those of stratiform rain events have decreased over Mongolia, a trend that is more pronounced around Khangai mountain area in central Mongolia and south-eastern desert steppe and eastern steppe, suggesting a possible transition from stratiform rains to convective rains. The findings of this research imply that increasing temperature and altered rain type ratios may affect each other as the decreasing number and duration of stratiform rain events allow for progressively longer sunshine period, possibly feeding back to the increased temperature. The release of this latent heat fuelling the upward movement of moisture and producing the convective rains could be one of the reasons of the significant rise in convective rain frequency for the study period. The observed changes in rain patterns have significant implications in ecosystem functioning and resource management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Batima P, Natsagdorj L, Gombluudev P, Erdenetsetseg B (2005) Observed climate change in Mongolia. Assess Imp Adapt Clim Change Work Pap 12:1–26

    Google Scholar 

  • Berg P, Moseley C, Haerter JO (2013) Strong increase in convective precipitation in response to higher temperatures. Nat Geosci 6:181–185. doi:10.1038/ngeo1731

    Article  Google Scholar 

  • Capsoni C, Luini L, Paraboni A et al (2009) A new prediction model of rain attenuation that separately accounts for stratiform and convective rain. IEEE Trans Antennas Propag 57:196–204. doi:10.1109/TAP.2008.2009698

    Article  Google Scholar 

  • Chen F, Wang J, Jin L et al (2009) Rapid warming in mid-latitude central Asia for the past 100 years. Front Earth Sci China 3(1):42–50. doi:10.1007/s11707-009-0013-9

    Article  Google Scholar 

  • Cheng X, An S, Li B et al (2006) Summer rain pulse size and rainwater uptake by three dominant desert plants in a desertified grassland ecosystem in northwestern China. Plant Ecol 184:1–12. doi:10.1007/s11258-005-9047-6

    Article  Google Scholar 

  • Dagvadorj D, Batjargal Z, Natsagdorj L (2014) MARCC-2014: Mongolia Second Assessment Report on Climate Change—2014. Ulaanbaatar

  • Dore MH (2005) Climate change and changes in global precipitation patterns: what do we know? Environ Int 31:1167–1181. doi:10.1016/j.envint.2005.03.004

    Article  Google Scholar 

  • Eckert S, Hüsler F, Liniger H, Hodel E (2015) Trend analysis of MODIS NDVI time series for detecting land degradation and regeneration in Mongolia. J Arid Environ 113:16–28. doi:10.1016/j.jaridenv.2014.09.001

    Article  Google Scholar 

  • Endo N, Ailikun B, Yasunari T (2005) Trends in precipitation amounts and the number of rainy days and heavy rainfall events during summer in China from 1961 to 2000. J Meteorol Soc Jpn Ser II 83:621–631. doi:10.2151/jmsj.83.621

    Article  Google Scholar 

  • Endo N, Kadota T, Matsumoto J et al (2006) Climatology and trends in summer precipitation characteristics in Mongolia for the period 1960–98. J Meteorol Soc Jpn 84:543–551. doi:10.2151/jmsj.84.543

    Article  Google Scholar 

  • Fu G, Yu J, Yu X et al (2013) Temporal variation of extreme rainfall events in China, 1961–2009. J Hydrol 487:48–59. doi:10.1016/j.jhydrol.2013.02.021

    Article  Google Scholar 

  • Gong D-Y, Shi P-J, Wang J-A (2004) Daily precipitation changes in the semi-arid region over northern China. J Arid Environ 59:771–784. doi:10.1016/j.jaridenv.2004.02.006

    Article  Google Scholar 

  • Goulden CE, Mead J, Horwitz R et al (2016) Interviews of Mongolian herders and high resolution precipitation data reveal an increase in short heavy rains and thunderstorm activity in semi-arid Mongolia. Clim Change 136(2):281–295. doi:10.1007/s10584-016-1614-4

    Article  Google Scholar 

  • Hülsmann L, Geyer T, Schweitzer C et al (2015) The effect of subarctic conditions on water resources: initial results and limitations of the SWAT model applied to the Kharaa river catchment in Northern Mongolia. Environ Earth Sci 73(2):581–592. doi:10.1007/s12665-014-3173-1

    Article  Google Scholar 

  • IG/EIC (2014) Desertification Atlas of Mongolia. Institute of Geoecology/Environmental Information Centre (IG/EIC), Ulaanbaatar

  • Jain SK, Kumar V (2012) Trend analysis of rainfall and temperature data for India. Curr Sci 102:37–49

    Google Scholar 

  • Jarraud M (2008) Guide to meteorological instruments and methods of observation (WMO-No. 8)

  • Kendall MG (1975) Rank auto-correlation methods. Charles Griffin, London

    Google Scholar 

  • Krishnakumar KN, Rao GP, Gopakumar CS (2009) Rainfall trends in twentieth century over Kerala, India. Atmos Environ 43:1940–1944. doi:10.1016/j.atmosenv.2008.12.053

    Article  Google Scholar 

  • Lam HY, Luini L, Din J et al (2010) Stratiform and convective rain discrimination for equatorial region. In: Research and Development (SCOReD), 2010 IEEE Student Conference on. IEEE, pp 112–116. doi: 10.1109/SCORED.2010.5703983

  • Li S-G, Romero-Saltos H, Tsujimura M et al (2007) Plant water sources in the cold semiarid ecosystem of the upper Kherlen River catchment in Mongolia: a stable isotope approach. J Hydrol 333:109–117. doi:10.1016/j.jhydrol.2006.07.020

    Article  Google Scholar 

  • Liu B, Xu M, Henderson M (2011) Where have all the showers gone? regional declines in light precipitation events in China, 1960–2000. Int J Climatol 31:1177–1191. doi:10.1002/joc.2144

    Article  Google Scholar 

  • Ma X, Yasunari T, Ohata T et al (2003) Hydrological regime analysis of the Selenge River basin, Mongolia. Hydrol Process 17:2929–2945. doi:10.1002/hyp.1442

    Article  Google Scholar 

  • Mann HB (1945) Nonparametric tests against trend. Econom J Econom Soc. doi:10.2307/1907187

    Google Scholar 

  • Marin A (2010) Riders under storms: contributions of nomadic herders’ observations to analysing climate change in Mongolia. Glob Environ Change 20:162–176. doi:10.1016/j.gloenvcha.2009.10.004

    Article  Google Scholar 

  • McBean E, Motiee H (2008) Assessment of impact of climate change on water resources: a long term analysis of the Great Lakes of North America. Hydrol Earth Syst Sci Discuss 12:239–255

    Article  Google Scholar 

  • Méndez-Lázaro PA, Nieves-Santiango A, Miranda-Bermúdez J (2014) Trends in total rainfall, heavy rain events, and number of dry days in San Juan, Puerto Rico, 1955–2009. Ecol Soc 2:50. doi:10.5751/ES-06464-190250

    Article  Google Scholar 

  • Minderlein S, Menzel L (2015) Evapotranspiration and energy balance dynamics of a semi-arid mountainous steppe and shrubland site in northern Mongolia. Environ Earth Sci 73(2):593–609. doi:10.1007/s12665-014-3335-1

    Article  Google Scholar 

  • Nandintsetseg B, Greene JS, Goulden CE (2007) Trends in extreme daily precipitation and temperature near Lake Hövsgöl, Mongolia. Int J Climatol 27:341–347. doi:10.1002/joc.1404

    Article  Google Scholar 

  • Puntsagdorj Ch (2014) Technological manual for meteorological observations and measurement, vol 14, 3rd edn. National Agency for Meteorology and Environmental Monitoring, Ulaanbaatar, Mongolia

  • Sato T, Kimura F, Kitoh A (2007) Projection of global warming onto regional precipitation over Mongolia using a regional climate model. J Hydrol 333:144–154. doi:10.1016/j.jhydrol.2006.07.023

    Article  Google Scholar 

  • Sayemuzzaman M, Jha MK (2014) Seasonal and annual precipitation time series trend analysis in North Carolina, United States. Atmos Res 137:183–194. doi:10.1016/j.atmosres.2013.10.012

    Article  Google Scholar 

  • Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63:1379–1389

    Article  Google Scholar 

  • Sharkhuu A, Sharkhuu N, Etzelmüller B et al (2007) Permafrost monitoring in the Hovsgol mountain region, Mongolia. J Geophys Res 112:F02S06. doi:10.1029/2006JF000543

    Article  Google Scholar 

  • Törnqvist R, Jarsjö J, Pietroń J et al (2014) Evolution of the hydro-climate system in the Lake Baikal basin. J Hydrol 519:1953–1962. doi:10.1016/j.jhydrol.2014.09.074

    Article  Google Scholar 

  • Trenberth KE (2011) Changes in precipitation with climate change. Clim Res 47:123. doi:10.3354/cr00953

    Article  Google Scholar 

  • Trenberth KE, Dai A, Rasmussen RM, Parsons DB (2003) The changing character of precipitation. Bull Am Meteorol Soc 84:1205–1217. doi:10.1175/BAMS-84-9-1205

    Article  Google Scholar 

  • Tsujimura M, Abe Y, Tanaka T et al (2007a) Stable isotopic and geochemical characteristics of groundwater in Kherlen River basin, a semi-arid region in eastern Mongolia. J Hydrol 333:47–57. doi:10.1016/j.jhydrol.2006.07.026

    Article  Google Scholar 

  • Tsujimura M, Sasaki L, Yamanaka T et al (2007b) Vertical distribution of stable isotopic composition in atmospheric water vapor and subsurface water in grassland and forest sites, eastern Mongolia. J Hydrol 333:35–46. doi:10.1016/j.jhydrol.2006.07.025

    Article  Google Scholar 

  • Tsutomu K, Gombo D (2007) Recent glacier variations in Mongolia. Ann Glaciol 46:185–188. doi:10.3189/172756407782871675

    Article  Google Scholar 

  • Vandandorj S, Gantsetseg B, Boldgiv B (2015) Spatial and temporal variability in vegetation cover of Mongolia and its implications. J Arid Land 7:450–461. doi:10.1007/s40333-015-0001-8

    Article  Google Scholar 

  • Westra S, Fowler HJ, Evans JP (2014) Future changes to the intensity and frequency of short-duration extreme rainfall. Rev Geophys 52:522–555. doi:10.1002/2014RG000464

    Article  Google Scholar 

  • Yatagai A, Yasunari T (1994) Trends and decadal-scale fluctuations of surface air temperature and precipitation over China and Mongolia during the recent 40 year period (1951–1990). J Meteor Soc Jpn 72:937–957

    Google Scholar 

  • Yue S, Hashino M (2003) Temperature trends in Japan: 1900–1996. Theor Appl Climatol 75:15–27. doi:10.1007/s00704-002-0717-1

    Google Scholar 

  • Zhai P, Zhang X, Wan H, Pan X (2005) Trends in total precipitation and frequency of daily precipitation extremes over China. J Clim 18:1096–1108. doi:10.1175/JCLI-3318.1

    Article  Google Scholar 

Download references

Acknowledgements

Support for this research was provided by the Asia Research Center, National University of Mongolia (NUM). The data for this study were obtained from National Agency for Meteorology and Environmental Monitoring (NAMEM). We are grateful to J. Odgarav, D. Tumurtsooj, G. Bolorjargal and N. Gansukh who are researchers at the Information and Research Institute of Meteorology, Hydrology and Environment (IRIMHE) for their assistance on this research. BB also thanks the Taylor Family-Asia Foundation Endowed Chair in Ecology and Conservation Biology for partial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bazartseren Boldgiv or Batdelger Gantsetseg.

Additional information

This article is part of a Topical Collection in Environmental Earth Sciences on "Water in Central Asia", guest edited by Daniel Karthe, Iskandar Abdullaev, Bazartseren Boldgiv, Dietrich Borchardt, Sergey Chalov, Jerker Jarsjo¨, Lanhai Li and Jeff Nittrouer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vandandorj, S., Munkhjargal, E., Boldgiv, B. et al. Changes in event number and duration of rain types over Mongolia from 1981 to 2014. Environ Earth Sci 76, 70 (2017). https://doi.org/10.1007/s12665-016-6380-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-6380-0

Keywords

Navigation