Skip to main content
Log in

Streamflow prediction uncertainty analysis and verification of SWAT model in a tropical watershed

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Appropriate implementation of Soil and Water Assessment Tool (SWAT) hydrologic model requires prediction uncertainty analysis, calibration and validation of the model against historical output records. Sequential Uncertainty Fitting-2 (SUFI-2) and Generalized Likelihood Uncertainty Estimation (GLUE) algorithms with ArcSWAT2009 and ArcGIS10.0 were used in this research to conduct uncertainty analysis, calibration and validation of the SWAT model using monthly observed streamflow data in Maybar experimental watershed, Ethiopia. The results revealed that the model was generally satisfactory as proved by the uncertainty, calibration and validation goodness of fit indicators: The goodness of fit and the degree to which the calibrated SWAT model accounted for the uncertainties assessed by: P-factor (72, 70 %) and (65, 69 %) for (calibration, validation) stages of SUFI-2 and GLUE algorithms, respectively, and R-factor (0.97, 0.90) and (0.89, 0.95) for (calibration, validation) stages of SUFI-2 and GLUE algorithms, respectively, are reached acceptable values, then the parameter uncertainties used were the desired parameter ranges. Further model evaluation statistics: Coefficient of Determination (R 2 ≥ 0.76), Nash–Sutcliffe efficiency (NSE ≥ 0.63), Percent Bias (PBIAS ≤ ± 7.10 %) and Root Mean Square Error-observations Standard deviation Ratio (RSR ≤ 0.46) for both calibration and validation periods were quantified and the extent of similarity between predicted and recorded streamflow data suggests that SWAT model can adequately simulate monthly streamflow at Maybar gauged watershed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abbaspour KC, Johnson CA, van Genuchten MT (2004) Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure. Vadose Zone J Hydrol 3(4):1340–1352

    Article  Google Scholar 

  • Abbaspour KC, Vejdani M, Haghighat S (2007) SWAT-CUP calibration and uncertainty programs for SWAT. EawagWeb. http://www.mssanz.org.au/…/24_s17/SWAT-CUP_s17_Abbaspour_.pdf. Accessed 24 March 2014

  • Arnold JG, Allen PM (1999) Automated methods for estimating baseflow and groundwater recharge from streamflow records. J Am Water Resour Assoc 35(2):411–424

    Article  Google Scholar 

  • Arnold JG, Allen PM, Muttiah R, Bernhardt G (1995a) Automated baseflow separation and recession analysis techniques. J Gr Water 33(6):1010–1018

    Article  Google Scholar 

  • Arnold JG, Williams JR, Maidment DR (1995b) Continuous-time on water and sediment routing model for large basins. J Hydraul Eng 121(2):171–183

    Article  Google Scholar 

  • Arnold JG, Srinivasan R, Muttiah RS, Williams JR (1998) Large-area hydrologic modeling and assessment: Part I Model development. J. Am Water Resour Assoc 34(1):73–89

    Article  Google Scholar 

  • Arnold JG, Kiniry JR, Srinivasan R, Williams JR, Haney EB, Neitsch SL (2011) Soil and Water Assessment Tool Input/Output File Documentation. Texas water Resources Institute Technical Report. Version 2009, Temple, Texas

  • Arnold JG, Moriasi DN, Gassman PW et al (2012) SWAT: model use, calibration, and validation. Trans Am Soc Agric Biol Eng 55(4):1491–1508

    Google Scholar 

  • ASCE (1993) Criteria for evaluation of watershed models. J Irrig Drain Eng 119:429–442

    Article  Google Scholar 

  • Behulu F, Setegn S, Melesse AM, Fiori A (2012) Hydrological analysis of the Upper Tiber Basin: a watershed modeling approach. Hydrol Process 27(16):2339–2351

    Google Scholar 

  • Behulu F, Setegn S, Melesse AM, Romano E, Fiori A (2014) Impact of climate change on the hydrology of upper Tiber River basin using bias corrected regional climate model. Water Resour Manage 28:1327–1343

    Article  Google Scholar 

  • Beven K (2000) Rainfall-runoff modeling: the primer. Wiley, New York

    Google Scholar 

  • Beven K (2006) On undermining the science? Hydrol Proc 20(14):3141–3146

    Article  Google Scholar 

  • Beven K, Binley A (1992) The future of distributed models: model calibration and uncertainty prediction. Hydrol Process 6(3):279–298

    Article  Google Scholar 

  • Beven K, Freer J (2001) Equifinality, data assimilation, and uncertainty estimation in mechanistic modeling of complex environmental systems. J Hydrol 249:11–29

    Article  Google Scholar 

  • Bracmort KS, Arabi M, Frankenberger JR, Engel BA, Arnold JG (2006) Modeling long-term water quality impact of structural BMPS. Trans ASAE 49(2):367–384

    Article  Google Scholar 

  • Dessu SB, Melesse AM (2012a) Modeling the rainfall-runoff process of the Mara River Basin using SWAT. Hydrol Process 26(26):4038–4049

    Article  Google Scholar 

  • Dessu SB, Melesse AM (2012b) Impact and uncertainties of climate change on the Hydrology of the Mara River Basin. Hydrol Process 27(20):2973–2986

    Google Scholar 

  • Duan Q (2003) Global Optimization for Watershed Model Calibration. In: Duan Q, Gupta HV, Sorooshian S, Rousseau AN, Turcotte R (eds) Calibration of Watershed Models. American Geophysical Union, Water Science and Application Series. Washington, DC, p 89–104

  • Duan Q, Sorooshian S, Gupta VK (1992) Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour Res 28(4):1015–1031

    Article  Google Scholar 

  • EAWAG (2013) SWAT-CUP2012: SWAT calibration and uncertainty programs—a user manual. Swiss Federal Institute of Aquatic Science and Technology

  • Gan TY, Dlamini EM, Biftu GF (1997) Effects of model complexity and structure, data quality, and objective functions on hydrologic modeling. J Hydrol 192(1):81–103

    Article  Google Scholar 

  • Gassman PW, Reyes M, Green CH, Arnold JG (2007) The Soil and Water Assessment Tool: Historical development, applications, and future directions. Trans ASABE 50(4):1211–1250

    Article  Google Scholar 

  • Gupta HV, Sorooshian S, Yapo PO (1998) Toward improved calibration of hydrologic models: multiple and non-commensurable measures of information. Water Resour Res 34:751–763

    Article  Google Scholar 

  • Gupta HV, Sorooshian S, Yapo PO (1999) Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. J Hydrol Eng 4(2):135–143

    Article  Google Scholar 

  • Gupta HV, Wagener T, Liu Y (2008) Reconciling theory with observations: Elements of a diagnostic approach to model evaluation. Hydrol Proc 22(18):3802–3813

    Article  Google Scholar 

  • Hargreaves GL, Hargreaves GH, Rile JP (1985) Agricultural benefits for Senegal River Basin. J Irrg Drian Eng 111(2):113–124

    Article  Google Scholar 

  • Kuczera G, Parent E (1998) Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the Metropolis algorithm. J Hydrol 211(1–4):69–85

    Article  Google Scholar 

  • Liu Y, Gupta HV (2007) Uncertainty in hydrologic modeling: Toward an integrated data assimilation framework. Water Resour Res. doi:10.1029/2006WR005756

    Google Scholar 

  • McKay MD (1988) Sensitivity and Uncertainty Analysis Using a Statistical Sample of Input Values. In: Ronen Y (ed) Uncertainty Analysis, 3rd edn. CRC Press, Boca Raton, pp 145–186

    Google Scholar 

  • Moriasi DN, Arnold JG, Van Liew MW, Binger RL, Harmel RD, Veith T (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50(3):885–900

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models, part I: a discussion of principles. J Hydrol 10(3):282–290

    Article  Google Scholar 

  • Neitsch SL, Arnold JG, Kiniry JR, Williams JR (2005) User Manual, Version 2005. Grassland Soil and Water Research Laboratory, Temple

    Google Scholar 

  • Neitsch SL, Arnold JG, Kiniry JR, Williams JR (2011) SWAT User Manual, Version 2009. Texas Water Resources Institute. Technical Report No 406, Temple, Texas

  • Ning J, Gao Z, Lu Q (2015) Runoff simulation using a modified SWAT model with spatially continuous HRUs. Environ Earth Sci 74:5895–5905

    Article  Google Scholar 

  • Olivera F, Valenzuela M, Srinivasan R, Choi J, Cho H, Koka S, Agrawal A (2006) ArcGIS-SWAT: A geodata model and GIS interface for SWAT. J Am Water Resour Assoc 42(2):295–309

    Article  Google Scholar 

  • Pluntke T, Pavlik D, Bernhofer C (2014) Reducing uncertainty in hydrological modelling in a data sparse region. Environ Earth Sci 72(12):4801–4816

    Article  Google Scholar 

  • Sahelemedin S, Bekele T (2000) Procedures for Soil and Plant Analysis Technical Paper. Ethiopian Agricultural Research Organization, National Soil Research Center, Addis Ababa

  • Santhi C, Arnold JG, Williams JR, Dugas WA, Hauck L (2001) Validation of the SWAT model on a large river basin with point and nonpoint sources. J Am Water Resour Assoc 37(5):1169–1188

    Article  Google Scholar 

  • Schuol J, Abbaspour KC, Yang H, Srinivasan R, Zehnder AJB (2008) Modeling blue and green water availability in Africa. Water Resour Res. doi:10.1029/2007WR006609

    Google Scholar 

  • SCRP (2000) Area of Maybar, Wollo, Ethiopia: Long-term Monitoring of the Agricultural Environment 1981–1994. Soil Erosion and Conservation Database. University of Berne, Switzerland, in association with the Ministry of Agriculture, Addis Ababa

  • Setegn S, Srinivasan R, Dargahi B, Melesse AM (2009a) Spatial delineation of soil erosion prone areas: application of SWAT and MCE approaches in the Lake Tana Basin. Ethiopia Hydrol Process 23(26):3738–3750

    Google Scholar 

  • Setegn S, Srinivasan R, Melesse AM, Dargahi B (2009b) SWAT model application and prediction uncertainty analysis in the Lake Tana Basin. Ethiopia Hydrol Process 24(3):357–367

    Google Scholar 

  • Setegn S, Dargahi B, Srinivasan R, Melesse AM (2010) Modeling of sediment yield from Anjeni gauged watershed, Ethiopia using SWAT model. JAWRA 46(3):514–526

    Google Scholar 

  • Singh J, Knapp HV, Demissie M (2004) Hydrologic modeling of the Iroquois River watershed using HSPF and SWAT. Champaign, Illinois State Water SurveyWeb. http://www.sws.uiuc.edu/pubdoc/CR/SWSCR2004-08.pdf. Accessed 29 Jan 2014

  • Sloan PG, Moore ID (1984) Modeling Subsurface Streamflow on Steeply Sloping Forested watersheds. Water Resour Res 20(12):1815–1822

    Article  Google Scholar 

  • Srinivasan R, Zhang X, Arnold JG (2010) SWAT Ungauged: Hydrological Budget and Crop Yield Predictions in the Upper Mississippi River Basin. Trans ASABE 53(5):1533–1546

    Article  Google Scholar 

  • USDA-SCS (1983) National Engineering Handbook. USDA, Washington, DC

    Google Scholar 

  • van Griensven A, Meixner T (2006) Methods to quantify and identify the sources of uncertainty for river basin water quality models. Water Sci Technol 53(1):51–59

    Article  Google Scholar 

  • van Griensven A, Meixner T, Srinivasan R, Grunwals S (2008) Fit-for-purpose analysis of uncertainty using split-sampling evaluations. Hydrol Sci J 53(5):1090–1103

    Article  Google Scholar 

  • Van Liew MW, Arnold JG, Garbrecht JD (2003) Hydrologic simulation on agricultural watersheds: Choosing between two models. Trans ASAE 46(6):1539–1551

    Article  Google Scholar 

  • Van Liew MW, Arnold JG, Bosch DD (2005) Problems and potential of auto-calibrating a hydrologic model. Trans ASAE 48(3):1025–1040

    Article  Google Scholar 

  • Vrugt JA, Gupta HV, Bouten W, Sorooshian S (2003) A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resour Res. doi:10.1029/2002WR001642

    Google Scholar 

  • Wagener T, Sivapalan M, McDonnell JJ, Hooper R, Lakshmi V, Liang X, Kumar P (2004) Predictions in ungauged basins (PUB): A catalyst for multi-disciplinary hydrology. Eos Trans AGU 85(44):451–452

    Article  Google Scholar 

  • Wang X, Melesse AM (2005) Evaluations of the SWAT model’s snowmelt hydrology in a Northwestern Minnesota watershed. Trans ASAE 48(4):1359–1376

    Article  Google Scholar 

  • Wang X, Melesse AM, Yang W (2006a) Influences of potential evapotranspiration estimation methods on SWAT’s hydrologic simulation in a Northwestern Minnesota watershed. Trans ASAE 49(6):1755–1771

    Article  Google Scholar 

  • Wang X, Melesse AM, Yang W (2006b) Effects of STATSGO and SSURGO as inputs on SWAT Model’s snowmelt simulation. J Am Water Resour Assoc 42(5):1217–1236

    Article  Google Scholar 

  • Wang X, Shang S, Yang W, Melesse AM (2008a) Simulation of an agricultural watershed using an improved curve number method in SWAT. Tans Am Soc Agri Bio Eng 51(4):1323–1339

    Google Scholar 

  • Wang X, Yang W, Melesse AM (2008b) Using hydrologic equivalent wetland concept within SWAT to estimate streamflow in watersheds with numerous wetlands. Tans Am Soc Agri Bio Eng 51(1):55–72

    Google Scholar 

  • Weigel G (1986) The soils of the Maybar Area, Wollo Research unit, Ethiopia. SCRP, Research Report 7. University of Berne, Switzerland, in association with the United Nations University, Tokyo

  • Williams JR (1969) Flood routing with variable travel time or variable storage coefficients. Trans ASAE 12(1):100–103

    Article  Google Scholar 

  • Yang J, Reichert P, Abbaspour KC, Xia J, Yang H (2008) Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China. J Hydrol. doi:10.1016/j.jhydrol.2008.05.012

    Google Scholar 

  • Yesuf HM, Assen M, Alamirew T, Melesse AM (2015) Modeling of sediment yield in Maybar gauged watershed using SWAT, Northeast Ethiopia. CATENA 127:191–205. doi:10.1016/j.catena.2014.12.032

    Article  Google Scholar 

  • Zhang X, Srinivasan R, Van Liew MW (2008) Multi-site calibration of the SWAT model for hydrologic modeling. Trans ASABE 51(6):2039–2049

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Wollo University and National Center of Competence in Research (NCCR) North–South for sponsoring this project. We sincerely appreciate Ali Ahmed’s priceless backing offered to us during fieldwork in the study area.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Assefa M. Melesse.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yesuf, H.M., Melesse, A.M., Zeleke, G. et al. Streamflow prediction uncertainty analysis and verification of SWAT model in a tropical watershed. Environ Earth Sci 75, 806 (2016). https://doi.org/10.1007/s12665-016-5636-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-5636-z

Keywords

Navigation