Skip to main content

Advertisement

Log in

Structural control on drainage network and catchment area geomorphology in the Dead Sea area: an evaluation using remote sensing and geographic information systems in the Wadi Zerka Ma’in catchment area (Jordan)

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The geology of Jordan is characterized by fault systems with three major trends: (1) NW–SE, the oldest, (2) WNW–ESE, and (3) NNW–SSE, the youngest. The drainage network of the Wadi Zerka Ma’in catchment area, located in the middle of the Dead Sea rift, parallels these structural orientations. A regional transtensive fault, with embedded normal faults, bounds the lower and middle part of the catchment area. The topographic profile of the Zerka Ma’in River exhibits two major knickpoints where it crosses two major embedded normal faults. The second major knickpoint developed as a result of the dramatic lowering of the Lisan Lake water level, a lake that pre-dates the Dead Sea. The decreased water level triggered river incision into the clastic sandstone units of Wadi Zerka Ma’in. We performed a morphotectonic analysis study to investigate how the rock structures control the drainage network and the catchment area geomorphology. According to the transverse topographic symmetry factor (T), the catchment area is highly asymmetric. The major basin asymmetry trend is SE-oriented, parallel to the oldest set of fault systems. The catchment area displays a convex hypsometric curve indicating a very recent stage in the geomorphologic cycle. Our study indicates that the Lisan Lake catchment area shrinkage and structures growth controlled and shaped the Wadi Zerka Ma’in catchment area geomorphology. The combined use of a geographic information system (GIS) and remote sensing was shown to be very efficient in unraveling the evolution of the drainage network and catchment area geomorphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abrahams D (1984) Channel networks: a geomorphological perspective. Water Resour Res 20:161–188

    Article  Google Scholar 

  • Andrews J (1991) Palaeozoic lithostratigraphy in the subsurface of Jordan. Nat Resour Auth Geol Bull 2, Amman, p 75

  • Bayer J (1988) Wadi Araba und Jordantal, Ein tektonischer Graben und zugleich Blattverschiebung. Nat Mus 118:33–45

    Google Scholar 

  • Ben-Avraham Z (1991) Development of asymmetric basins along continental transform faults. Tectonophysics 215:209–220

    Article  Google Scholar 

  • Bender F (1968) Geologie von Jordanien. Gebrueder Borntraeger, Berlin

    Google Scholar 

  • Bender F (1974) Geology of Jordan. Contribution of the regional geology of the earth. Borntraeger, Berlin, p 196

    Google Scholar 

  • Bundesanstalt für Bodenforschung und Rohstoffe (BGR) (1997) Investigations of the regional basalt aquifer system in Jordan and Syria, E/ESCWA/ENR/1, Hannover,p 60

  • Bishop P, Hoey TB, Jansen JD, Artza IL (2005) Knickpoint recession rate and catchment area: the case of uplifted rivers in Eastern Scotland. Earth Surf Proc Land 30:767–778

    Article  Google Scholar 

  • Bolongaro-Crevenna A, Torres-Rodríguez V, Sorani V, Frame D, Ortiz MA (2005) Geomorphometric analysis for characterizing landforms in Morelos State, Mexico. Geomorphology 67:407–422

    Article  Google Scholar 

  • Closson D, Abou Karaki K (2009) Human-induced geological hazards along the Dead Sea coast. Environ Geol 58:371–380

    Article  Google Scholar 

  • Closson D, Abou Karaki N, Hallot F (2010) Landslides along the Jordanian Dead Sea coast triggered by the lake level lowering. Environ Earth Sci 59:1417–1430

    Article  Google Scholar 

  • De Vries HL, Barendsen GW (1954) Measurement of age by the carbon-14 technique. Nature 174(4442):1138–1141

    Article  Google Scholar 

  • Dubertret L (1929) Etudes des regions Volcaniques du Huran, du Djabal Druse et du diret et Touloul. Rev Geogr Pyhs Geol Dyn 2(4):275–321 [Paris]

    Google Scholar 

  • El Bastawesy M (2007) Influence of DEM source and resolution on the hydrographical simulation of Wadi Keed catchment, Southern Sinia, Egypt. Egypt J Rem Sens Space Sci 9:68–79

    Google Scholar 

  • El Bastawesy M, Ali R, Al Harbi K, Faid A (2013) Impact of the geomorphology and soil management on the development of waterlogging in closed drainage basins of Egypt and Saudi Arabia. Environ Earth Sci 68:1271–1283

    Article  Google Scholar 

  • Enzel Y, Agnon A, Stein M (2006) New frontiers in Dead Sea paleoenvironmental research. Geological Society of America, Boulder, p 401

    Google Scholar 

  • Evans S (1972) General geomorphology, derivatives of altitude and descriptive statistics. In: Chorley RJ (ed) Spatial analysis in geomorphology. Harper and Row, New York, pp 17–90

    Google Scholar 

  • Flexer A (1968) Stratigraphy and facies development of the Mount Scopus Group in Israel and adjacent countries. Isr J Earth Sci 17:85–114

    Google Scholar 

  • Flint J (1974) Stream gradient as a function of order, magnitude, and discharge. Water Resour Res 10:969–973

    Article  Google Scholar 

  • Frumkin A, Elitzur Y (2002) Historic Dead Sea level fluctuations calibrated with geological and archaeological evidence. Quat Res 57:334–342

    Article  Google Scholar 

  • Gardner W (1983) Experimental study of knickpoint and longitudinal evolution in cohesive, homogeneous material. Geol Soc Am Bull 94:664–672

    Article  Google Scholar 

  • Garfunkel Z, Ben-Avraham Z (1996) The structure of the Dead Sea basin. Tectonophysics 266:155–176

    Article  Google Scholar 

  • Garrote J, Cox T, Swann C, Ellis M (2006) Tectonic geomorphology of the Southeastern Mississippi Embayment in northern Mississippi, USA. Geol Soc Am Bull 118–9:1160–1170

    Article  Google Scholar 

  • Gong J, Xie J (2009) Extraction of drainage networks from large terrain datasets using high through put computing. Comput Geosci 35:337–346

    Article  Google Scholar 

  • Hack T (1973) Stream-profile analysis and stream-gradient index. J Res US Geol Surv 1:421–429

    Google Scholar 

  • Horowitz A (2001) The Jordan Rift Valley. Ballkema, Rotterdam, p 730

    Book  Google Scholar 

  • Horton R (1945) Erosional development of stream and their drainage basin: hydrophysical approach to quantitive morphology. Geol Soc Am Bull 56:275–370

    Article  Google Scholar 

  • Huggett R (2007) Fundamentals of geomorphology. Routledge, New York, p 447

    Google Scholar 

  • Hurtrez E, Sol C, Lucazeau F (1999) Effect of drainage area on hypsometry from an analysis of small-scale drainage basins in the Siwalik Hills (central Nepal). Earth Surf Proc Land 24:799–808

    Article  Google Scholar 

  • Johnson P (1998) Tectonic map of Saudi Arabia and adjacent areas. Technical report USGS-TR-98-3, p 2

  • Kaliraj S, Chandrasekar N, Magesh NS (2014) Morphometric analysis of the river Thamirabarani Sub-Basin in Kanyakumari District, South West Coast of Tamil Nadu, India, using remote sensing and GIS. Environ Earth Sci 73:7375–7401

    Article  Google Scholar 

  • Keller EA, Pinter N (2002) Active tectonics: earthquakes and landscape. Prentice-Hall, Upper Saddle River, p 362

    Google Scholar 

  • Keller E, Gurrola L, Tierney T (1999) Geomorphic criteria to determine direction of lateral propagation of reverse faulting and folding. Geology 27:515–518

    Article  Google Scholar 

  • Kirby E, Whipple X (2001) Quantifying differential rock-uplift rates via stream profile analysis. Geology 29:415–418

    Article  Google Scholar 

  • Klinger Y, Avouac JP, Dorbath L, Abou Karaki N, Tisnerat N (2000) Seismic behavior of the Dead Sea fault along Araba valley (Jordan). Geophys J Int 142:769–782

    Article  Google Scholar 

  • Knighton D (1998) Fluvial forms and processes. Edward Arnold, New York, p 380

    Google Scholar 

  • Kothyari G, Rastogi K (2013) Tectonic control on drainage network evolution in the Upper Narmada Valley: implication to neotectonics. Geogr J. doi:10.1155/2013/325808

    Google Scholar 

  • Laske G, Weber M, The DESERT Working Group (2008) Lithosphere structure across the Dead Sea Transform as constrained by Rayleigh waves observed during the DESERT experiment. Geophys J Int 173:593–610

    Article  Google Scholar 

  • Mahmood A, Batool H, Waheed Z, Akhtar A, Masood A (2013) Investigation of neotectonics along Hazara Kashmir syntaxis through remote sensing and GIS analysis. Int J Recent Dev Eng Technol 1(3):61–67

    Google Scholar 

  • Niemi T, Ben-Avraham Z (1997) The Dead Sea: the lake and its setting. Monographs on Geology and Geophysics Press 36, Oxford University, pp 326–336

  • O’Callaghan J, Mark D (1984) The extraction of drainage networks from digital elevation data. Comput. Vision Graph 28:323–344

    Article  Google Scholar 

  • Odeh T, Gloaguen R, Schirmer M, Geyer S, Rödiger T, Siebert C (2009a): Exploration of Wadi Zerka Ma’in rotational fault and its drainage pattern, Eastern of Dead Sea, by means of remote sensing, GIS and 3D geological modeling. In: Proceeding of SPIE Europe’s international symposium on remote sensing (ERS09), vol 7478, Berlin, p 11

  • Odeh T, Salameh E, Schirmer M, Strauch G (2009b) Structural control of groundwater flow regimes and groundwater chemistry along the lower reaches of the Zerka River, West Jordan, using remote sensing, GIS, and field methods. Environ Geol 58:1797–1810

    Article  Google Scholar 

  • Odeh T, Gloaguen R, Schirmer M, Geyer S, Rödiger T, Siebert C (2010) Investigation of catchment areas migrations through a Sinstral and Dextral Strike Slip Faults: the case study of Zerka Ma’in and Al Hasa catchment areas, east of the Dead Sea in Jordan. In: Proceedings of the 4 ASME/WSEAS international conference on geology and seismology (GES’10), Cambridge, ISBN: 978-960- 474-160-1, pp 120–126

  • Odeh T, Geyer S, Rödiger T, Siebert C, Schirmer M (2013) Groundwater chemistry of strike slip faulted aquifers: the case study of Wadi Zerka Ma’in aquifers, north east of the Dead Sea. Environ Earth Sci 70:393–406

    Article  Google Scholar 

  • Odeh T, Rödiger T, Geyer S, Schirmer M (2015) Hydrological modelling of a heterogeneous catchment using an integrated approach of remote sensing, a geographic information system and hydrologic response units: the case study of Wadi Zerka Ma’in catchment area, north east of the Dead Sea. Environ Earth Sci 73:3309–3326. doi:10.1007/s12665-014-3627-5

    Article  Google Scholar 

  • Ohmori H (1993) Changes in the hypsometric curve through mountain building. Geomorphology 8:263–277

    Article  Google Scholar 

  • Phillips J, Lutz D (2008) Profile convexities in bedrock and alluvial streams. Geomorphology 102:554–566

    Article  Google Scholar 

  • Quennell AM (1956) The structural and geomorphic evolution of the Dead Sea Rift. Q J Geol Soc Lond 114:1–18

    Article  Google Scholar 

  • Ribolini A, Spagnolo M (2008) Drainage network geometry versus tectonics in the Argentera Massif (French–Italian Alps). Geomorphology 93:253–266

    Article  Google Scholar 

  • Rodríguez-Iturbe I, Rinaldo A (1997) Fractal River Basins: chance and self-organization. Cambridge University Press, New York, p 564

    Google Scholar 

  • Rodríguez-Iturbe I, Valdes J (1979) The geomorphologic structure of the hydrologic response. Water Resour Res 15:1409–1420

    Article  Google Scholar 

  • Saintot A, Angelier J, Chorowicz J (1999) Mechanical significance of structural patterns identified by remote sensing studies: a multiscale analysis of tectonic structures in Crimea. Tectonophysics 32:187–218

    Article  Google Scholar 

  • Salameh E, Al Farajat M (2007) The role of volcanic eruptions in blocking the drainage leading to the Dead Sea formation. Environ Geol J 52:519–527

    Article  Google Scholar 

  • Salameh E, Bannayan H (1993) Water Resources of Jordan—present status and future potentials. Friedrich Ebert Stiftung, Amman

    Google Scholar 

  • Shahzad F, Gloaguen R (2009a) Understanding tectonics from digital elevation model, part 1: drainage network preparation and stream profile analysis. Comput Geosci 37:250–260

    Article  Google Scholar 

  • Shahzad F, Gloaguen R (2009b) Understanding tectonics from digital elevation model, part 2: surface dynamics and basin analysis. Comput Geosci 37:261–271

    Article  Google Scholar 

  • Shahzad F, Mahmood S, Gloaguen R (2009) Drainage network and lineament analysis: an approach for Potwar Plateau (Northern Pakistan). J Mt Sci 6:14–24

    Article  Google Scholar 

  • Shtober-Zisu N, Greenbaum N, Inbar M, Flexer A (2008) Morphometric and geomorphic approaches for assessment of tectonic activity, Dead Sea Rift (Israel). Geomorphology 102:93–104

    Article  Google Scholar 

  • Sneh A (1996) The Dead Sea Rift: lateral displacement and down faulting phases. Tectonophysics 263:277–292

    Article  Google Scholar 

  • Snyder N, Whipple K, Tucker G, Merritts D (2000) Landscape response to tectonic forcing: DEM analysis of stream profiles in the Mendocino Triple junction region, Northern California. Geol Soc Am Bull 112:1250–1263

    Article  Google Scholar 

  • Sreedevi D, Sreekanth D, Khan H, Ahmed S (2012) Drainage morphometry and its influence on hydrology in an semi arid region: using SRTM data and GIS. Environ Earth Sci 70:839–848

    Article  Google Scholar 

  • Stephenson D (2003) Water resources management. Taylor and Francis, The Netherlands, p 323

    Book  Google Scholar 

  • Strahler A (1952) Hypsometric (area-altitude) analysis of erosional topography. Geol Soc Am Bull 63:1117–1253

    Article  Google Scholar 

  • Street-Perrott A, Harrison P (1985) Lake levels and climate reconstruction. In: Hecht AD (ed) Paleoclimate analysis and modeling. Wiley, New York, pp 291–340

    Google Scholar 

  • Subramanya K (2006) Engineering hydrology. Tata McGraw-Hill, New Delhi, p 392

    Google Scholar 

  • Troiani F, Della M (2008) The use of the Stream Length-Gradient index in morphotectonic analysis of small catchments: a case study from Central Italy. Geomorphology 102:159–168

    Article  Google Scholar 

  • Tucker E, Slingerland L (1994) Erosional dynamics, flexural isostasy, and long-lived escarpments: a numerical modeling study. J Geophys Res 99:12229–12243

    Article  Google Scholar 

  • Van der Beek P, Champel B, Mugnier L (2002) Control of detachment dip on drainage development in regions of active fault-propagation folding. Geology 30:471–474

    Article  Google Scholar 

  • Vivoni R, Benedetto F, Grimaldi S, Eltahir E (2008) Hypsometric control on surface and subsurface runoff. Water Resour Res 44:12502–12512

    Google Scholar 

  • Wade AJ, Smith SJ, Black ECL, Brayshaw DJ, Holmes PAC, El-Bastawesy M, Rambeau CMC, Mithen SJ (2012) A new method for the determination of Holocene palaeohydrology. J Hydrol. doi:10.1016/j.jhydrol.2011.10.033

    Google Scholar 

  • Wang X, Yin Z (1998) A comparison of drainage networks derived from digital elevation models at two scales. J Hydrol 210:221–241

    Article  Google Scholar 

  • Whipple X (2004) Bedrock rivers and the geomorphology of active orogens. Annu Rev Earth Planet Sci 32:151–185

    Article  Google Scholar 

  • Whipple X, Tucker E (1999) Dynamics of the stream-power river incision model: implications for height limits of mountain ranges, landscape response timescales, and research needs. J Geophys Res 104:17661–17674

    Article  Google Scholar 

  • Wilson T, Dominic J (1998) Fractal interrelationships between topography and structure. Earth Surf Proc Land 23:509–525

    Article  Google Scholar 

  • Wobus W, Whipple X, Kirby E, Snyder P, Johnson J, Spyropolou K, Crosby BT, Sheehan D (2006) Tectonics from topography: procedures, promise and pitfalls. In: Willett SD, Hovius N, Brandon MT, Fisher DM (eds) Tectonics, climate and landscape evolution. Geological Society of America Special Paper 398: Penrose Conference Series, pp 55–74

  • Wood D (1996) The geomorphologic characterization of digital elevation models. PhD Dissertation, University of Leicester, UK

Download references

Acknowledgments

We are thankful to the editorial board and the four anonymous reviewers who improved the manuscript. We would like to thank the German Academic Exchange Service (DAAD—Deutscher Akademischer Austausch Dienst) and the Federal Ministry of Education and Research (BMBF—Bundesministerium für Bildung und Forschung; Grant FKZ 02-WM 0848) for the financial support. We thank Adam Szulc (TU Freiberg, Germany) for reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taleb Odeh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 864 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Odeh, T., Gloaguen, R., Mohammad, AS.H. et al. Structural control on drainage network and catchment area geomorphology in the Dead Sea area: an evaluation using remote sensing and geographic information systems in the Wadi Zerka Ma’in catchment area (Jordan). Environ Earth Sci 75, 482 (2016). https://doi.org/10.1007/s12665-016-5447-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-5447-2

Keywords

Navigation