Skip to main content
Log in

Green roof benefits for reducing flood risk at the catchment scale

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Among the European countries, Italy is one of the most susceptible to hydrogeological instability events related to the risk of flooding in intensely populated basins, especially inside the Po Valley. A clear example is the Seveso river basin, whose territories are regularly stressed several times per year by flooding events, which in recent years have increased in frequency and intensity. However, it is now impossible to intervene with structural projects aimed at the lamination of flood events, even in modest return periods because of excessive urbanization and continuous residential and industrial expansion. Using extensive and detailed green roof parameters, this study modelled the hydrologic effect of three hypothetical roof greening scenarios at the catchment scale (conversion of 5, 30, and 100 % impervious to green roofs). The modelling of the green roof performances was performed using the Environmental Protection Agency (EPA) Storm Water Management Model (SWMM) and was calibrated over five years of hourly discharge measurements at the closure section of the basin. Hydrologic modelling demonstrated that widespread green roof implementation significantly reduces peak runoff rates and runoff volumes by up to 30 and 35 %, respectively, in the case of 100 % conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barco J, Wong KM, Stenstrom MK, Asce F (2008) Automatic calibration of the US Epa SWMM model for a large urban catchment. J Hydraul Eng 134:466–474. doi:10.1061/(ASCE)0733-9429(2008)134:4(466)

    Article  Google Scholar 

  • Becciu G, Paoletti A (2006) Fondamenti di costruzioni idrauliche. UTET, Milano

    Google Scholar 

  • Bengtsson L, Grahn L, Olsson J (2005) Hydrological function of a thin extensive green roof in southern Sweden. Nord Hydrol 36:259–268

    Google Scholar 

  • Berghage R, Jarrett A, Beattie D, Kelley K, Husain S, Rezai F, Long B, Negassi A, Cameron R, Hunt W (2007) Quantifying evaporation and transpirational water losses from green roofs and green roof media capacity for neutralizing acid rain. Center for Green Roof Research at the Pennsylvania State University, Altoona

    Google Scholar 

  • Bliss DJ, Neufeld RD, Ries RJ (2009) Storm water runoff mitigation using a green roof. Environ Eng Sci 26:407–417. doi:10.1089/ees.2007.0186

    Article  Google Scholar 

  • Bocchi S, La Rosa D, Pileri P (2012) Agro-ecological analysis for the eu water framework directive: an applied case study for the river contract of the seveso basin (Italy). Environ Manag 50:514–529. doi:10.1007/s00267-012-9925-3

    Article  Google Scholar 

  • Breilinger R, Duster H, Weingartner R (1993) Methods of catchment characterization by means of basin parameters (assisted by GIS)—empirical report from Switzerland. Inst Hydrol Methods Hydrol Basin Comp 120:171–181

    Google Scholar 

  • Brocca L, Melone F, Moramarco T (2011) Distributed rainfall-runoff modelling for flood frequency estimation and flood forecasting. Hydrol Process 25:2801–2813. doi:10.1002/hyp.8042

    Article  Google Scholar 

  • Brocca L, Liersch S, Melone F, Moramarco T, Volk M (2013) Application of a model-based rainfall-runoff database as efficient tool for flood risk management. Hydrol Earth Syst Sci 17:3159–3169. doi:10.5194/hess-17-3159-2013

    Article  Google Scholar 

  • Carter TL, Rasmussen TC (2006) Hydrologic behavior of vegetated roofs. J Am Water Resour Assoc 42:1261–1274. doi:10.1111/j.1752-1688.2006.tb05611.x

    Article  Google Scholar 

  • Claessens L, Hopkinson C, Rastetter E, Vallino J (2006) Effect of historical changes in land use and climate on the water budget of an urbanizing watershed. Water Resour Res 42:W03426

    Article  Google Scholar 

  • Confalonieri R, Acutis M, Bellocchi G, Donatelli M (2009) Multi-metric evaluation of the models WARM, CropSyst, and WOFOST for rice. Ecol Model 220:1395–1410. doi:10.1016/j.ecolmodel.2009.02.017

    Article  Google Scholar 

  • Di Modugno M, Gioia A, Gorgoglione A, Iacobellis V, Forgia G, Piccinni A, Ranieri E (2015) Build-up/Wash-off monitoring and assessment for sustainable management of first flush in an urban area. Sustainability 7:5050–5070. doi:10.3390/su7055050

    Article  Google Scholar 

  • Dongquan Z, Jining C, Wang H, Qingyuan T, Shangbing C, Zheng S (2009) GIS-based urban rainfall-runoff modeling using an automatic catchment-discretization approach: a case study in Macau. Environ Earth Sci 59:465–472

    Article  Google Scholar 

  • Doorenbos J, Pruitt WO (1975) Guidelines for predicting crop water requirements, irrigation and drainage. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Duan Q, Sorooshian S, Gupta V (1992) Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour Res 28:1015–1031. doi:10.1029/91WR02985

    Article  Google Scholar 

  • Dunnett N, Kingsbury N (2004) Planting green roofs and living walls. Timber Press Inc, Portland

    Google Scholar 

  • Ferro V (2013) Elementi di idraulica e idrologia per le scienze agrarie, ambientali e forestali. McGraw-Hill, Milano

    Google Scholar 

  • Gandolfi C, Facchi A, Ortuani B, Maggi D (2002) A distributed simulation system for irrigation planning at the chatchment scale. Proc IESMM 1:299–304

    Google Scholar 

  • Getter KL, Rowe DB, Andresen JA (2007) Quantifying the effect of slope on extensive green roof stormwater retention. Ecol Eng 31:225–231. doi:10.1016/j.ecoleng.2007.06.004

    Article  Google Scholar 

  • Giura R, DeWrachien D, Savi F (1995) Ground water simulation for the control of the hydraulic behaviour of a densely-settled alluvional plain. ICID J 44:51–71

    Google Scholar 

  • Hathaway AM, Hunt WF, Jennings GD (2008) A field study of green roof hydrologic and water quality performance. Translator 51:37–44

    Google Scholar 

  • Hoffmann L, El Idrissi A, Pfister L, Hingray B, Guex F, Musy A, Humbert J, Drogue G, Leviandier T (2004) Development of regionalized hydrological models in an area with short hydrological observation series. River Res Applic 20:243–254. doi:10.1002/rra.774

    Article  Google Scholar 

  • Huber WC, Dickinson RE (1988) Storm water management model user’s manual, version 4, EPA/600/3-88/001a (NTIS PB88-236641/AS). Environ Protect Agency, Athens, GA

    Google Scholar 

  • James W, Rossman LE, James WRC (2010) User guide to SWMM, 13th edn. CHI press, Guelph

    Google Scholar 

  • Ji S, Qiuwen Z (2015) A GIS based subchactment division approach for SWMM. Open Civ Eng J 9:515–521

    Article  Google Scholar 

  • Lamberti P, Leoni G (1997) Problematiche delle reti di bonifica in aree fortemente antropizzate: il caso della bonifica renana nel territorio della bassa Bolognese. In: Brath A, Maione U (cur) Atti del Corso di Aggiornamento “Moderne tecniche e criteri per la sistemazione dei corsi d’acqua in territori fortemente antropizzati” Politecnico di Milano, Bios Ed

  • Liong SY, Chan WT, Lum LH (1991) Knowledge-based system for SWMM runoff component calibration. J Water Resour Plann Manage 117:507–523. doi:10.1061/(ASCE)0733-9496(1991)117:5(507)

    Article  Google Scholar 

  • Lombardy Region (2003) Legge Regionale 2/2003. Bollettino ufficiale N. 12, 1o supplemento ordinario. http://www.consultazioniburl. servizirl.it/ConsultazioneBurl/. Accessed 14 Feb 2011

  • Lombardy Region (2007) Destinazione d’Uso dei Suoli Agricolo Forestali (DUSAF 4.0) 2005. http://www.ersaf.lombardia.it/upload/ ersaf/gestionedocumentale/Strutt_classi%20Leg_DUSAF_784_ 5523.pdf. Accessed 14 Feb 2012

  • Lombardy Region (2009) Rapporto sullo stato dell’Ambiente 2008–2009. http://ita.arpalombardia.it/ita/RSA_2008 2009/04-idrosfera/0401.htm. Accessed 14 Feb 2012

  • McCuen R, Johnson PA, Ragan RM (1996) Highway hydrology: hydraulic design series no. 2. No. FHWA-SA-96-067. Federal Highway Administration,Washington, DC

  • Mitchell VG, Cleugh HA, Grimmond CSB, Xu J (2008) Linking urban water balance and energy balance models to analyse urban design options. Hydrol Process 22:2891–2900. doi:10.1002/hyp.6868

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I—A discussion of principles. J Hydrol 10:282–290. doi:10.1016/0022-1694(70)90255-6

    Article  Google Scholar 

  • Oberndorfer E, Lundholm J, Bass B, Coffman RR, Doshi H, Dunnett N, Gaffin S, Köhler M, Liu KKY, Rowe B (2007) Green roofs as urban ecosystems: ecological structures, functions, and services. Bioscience 57:823–833. doi:10.1641/B571005

    Article  Google Scholar 

  • Palla A, Berretta C, Lanza LG, La Barbera P (2008a) Modeling storm water control operated by green roofs at the urban catchment scale Proceedings of the 11th International Conference on Urban Drainage. Edinburgh

  • Palla A, Lanza LG, La Barbera P (2008b) A green roof experimental site in the Mediterranean climate 11th International Conference on Urban Drainage. Edinburgh

  • Palla A, Gnecco I, Lanza LG (2009) Unsaturated 2D modelling of subsurface water flow in the coarse-grained porous matrix of a green roof. J Hydrol 379:193–204. doi:10.1016/j.jhydrol.2009.10.008

    Article  Google Scholar 

  • Paoletti A (2011) Studio idraulico del torrente Seveso. Nel tratto che va dalle sorgenti alla presa C.S.N.O. in località Palazzolo in comune di Paderno Dugnano (MI) e studio di fattibilità della vasca di laminazione del C.N.S.O. a Senago (Mi). Relation AIPO (Interregional Agency of Po protection)

  • Sherrard JA, Jacobs JM, Asce M (2012) Vegetated roof water-balance model: experimental and model results. J Hydrol Eng 17:858–868. doi:10.1061/(ASCE)HE.1943-5584.0000531

    Article  Google Scholar 

  • Teemusk A, Mander Ü (2007) Rainwater runoff quantity and quality performance from a greenroof: the effects of short-term events. Ecol Eng 30:271–277. doi:10.1016/j.ecoleng.2007.01.009

    Article  Google Scholar 

  • VanWoert ND, Rowe DB, Andresen JA, Rugh CL, Fernandez RT, Xiao L (2005) Green roof stormwater retention: effects of roof surface, slope, and media depth. J Environ Qual 34:1036–1044

    Article  Google Scholar 

  • Villarreal EL, Bengtsson L (2005) Response of a sedum green-roof to individual rain events. Ecol Eng 25:1–7. doi:10.1016/j.ecoleng.2004.11.008

    Article  Google Scholar 

  • Wolf D, Lundholm JT (2008) Water uptake in green roof microcosms: effects of plant species and water availability. Ecol Eng 33:179–186. doi:10.1016/j.ecoleng.2008.02.008

    Article  Google Scholar 

  • Wu JY, Thompson JR, Kolka RK, Franz KJ, Stewart TW (2013) Using the storm water management model to predict urban headwater stream hydrological response to climate and land cover change. Hydrol Earth Syst Sci 17:4743–4758

    Article  Google Scholar 

Download references

Acknowledgements

The work shown in this paper is an improvement of the work developed by Simone Martinelli, Luigi Piani, Umberto Sopranzi and Andrea Stelitano (and supported by the authors) during the bachelor degree thesis in Civil and Environmental Engineering at the Politecnico of Milan. We are also grateful to Prof. Gianfranco Becciu, Prof. Gian Battista Bischetti and Prof. Claudio Gandolfi for their suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Masseroni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masseroni, D., Cislaghi, A. Green roof benefits for reducing flood risk at the catchment scale. Environ Earth Sci 75, 579 (2016). https://doi.org/10.1007/s12665-016-5377-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-5377-z

Keywords

Navigation