Skip to main content
Log in

Major ion geochemistry of the Nansihu Lake basin rivers, North China: chemical weathering and anthropogenic load under intensive industrialization

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

To explore the chemical weathering processes and the anthropogenic disturbance of weathering, 20 water samples were collected from the tributaries in the Nansihu Lake basin, a growing industrial area. The major ions in river waters were analyzed to identify and quantify the contributions of the different reservoirs. Based on stoichiometric analyses and end-member determination, the contributions of individual reservoirs were calculated for each tributary. In the study region, the averaged contributions of atmospheric inputs, anthropogenic inputs, evaporite weathering, carbonate weathering and silicate weathering were 2, 37, 28, 25 and 8 %, respectively. Combined with information regarding runoff and drainage area, the annual average contribution of TDS to waters was estimated to be 1.90 ± 0.95 ton/km2 from silicate weathering, 5.68 ± 2.84 ton/km2 from carbonate weathering. Furthermore, the associated consumption of CO2 was calculated to be approximately 7.50 × 109 mol/a. The industrial and mining activities were the main sources for anthropogenic inputs, and they produced non-CO2 acids (NCA). Of all protons involved in chemical weathering, 34 % was presumed to be originated from NCA, causing 2.74 × 109 mol/a of CO2 degassing. Moreover, industrial inputs could play a major role in the modification of the chemicals in the water system, and they could even change the carbonate weathering rate in such an intensively industrializing region. In North China, the chemical weathering associated with NCA was found to be significant for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Barnes TR, Raymond AP (2009) The contribution of agricultural and urban activities to inorganic carbon fluxes within temperate watersheds. Chem Geo 266:318–327

    Article  Google Scholar 

  • Beaulieu E, Godddèris Y, Labat D, Roelandt C, Calmels D, Gaillardet J (2011) Modeling of water-rock interaction in the Mackenzie basin: competition between sulfuric and carbonic acids. Chem Geo 289:114–123

    Article  Google Scholar 

  • Brennan SK, Lowenstein TK (2002) The major ion composition of Silurian seawater Geochim. Cosmochim Acta 66:2683–2700

    Article  Google Scholar 

  • Calmels D, Gaillardet J, Brenot A, France-Lanord C (2007) Sustained sulfide oxidation by physical erosion processes in the Mackenzie River basin: climatic perspectives. Geology 35:1003–1006

    Article  Google Scholar 

  • Chen J, He D (1999) Chemical characteristics and genesis of major ions in the Pearl River basin. Acta Sci Nat Univ Pekin 35:786–793 (in Chinese with English abstract)

    Google Scholar 

  • Chen J, Wang F, Xia X, Zhang L (2002) Major element chemistry of the Changjiang (Yangtze River). Chem Geol 187:231–255

    Article  Google Scholar 

  • Cheng XS, Jia L, Cheng XF (2005) Analysis of natural water chemistry characteristics in the Huai River basin and Shandong Peninsula. Water Resour Protect 21:15–18 (in Chinese with English abstract)

    Google Scholar 

  • Chetelat B, Liu CQ, Zhao ZQ, Wang QL, Li SL, Li J et al (2008) Geochemistry of the dissolved load of the Changjiang Basin rivers: anthropogenic impacts and chemical weathering. Geochim Cosmochim Acta 72:4254–4277

    Article  Google Scholar 

  • Dalai TK, Krishnaswami S, Sarin MM (2002) Major ion chemistry in the headwaters of the Yamuna river system: chemical weathering, its temperature dependence and CO2 consumption in the Himalaya. Geochim Cosmochim Acta 66:3397–3416

    Article  Google Scholar 

  • Eiriksdottir ES, Gislason SR, Oelkers EH (2011) Does runoff or temperature control chemical weathering rates? Appl Geochem 26:S346–S349

    Article  Google Scholar 

  • Fan BL, Zhao ZQ, Tao FX, Liu BJ, Tao ZH, Gao S et al (2014) Characteristics of carbonate, evaporite and silicate weathering in Huanghe River basin: a comparison among the upstream, midstream and downstream. J Asian Earth Sci 96:17–26

    Article  Google Scholar 

  • Gaillardet J, Duprè B, Louvat P, Allègre CJ (1999) Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem Geo 159:3–30

    Article  Google Scholar 

  • Galy A, France-Lanord C (1999) Weathering processes in the Ganges–Brahmaputra basin and the riverine alkalinity budget. Chem Geol 159:31–60

    Article  Google Scholar 

  • Gibbs RJ (1970) Mechanisms controlling world water chemistry. Science 170:1088–1090

    Article  Google Scholar 

  • Gupta H, Chakrapani GJ, Selvaraj K, Shuh JK (2011) The fluvial geochemistry, contributions of silicate, carbonate and saline–alkaline components to chemical weathering flux and controlling parameters: Narmada River (Deccan Traps), India. Geochim Cosmochim Acta 75:800–824

    Article  Google Scholar 

  • Gurumurthy GP, Balakrishna K, Riotte J, Braun JJ, Audry S, Shankar HNU, Manjunatha BR (2012) Controls on intense silicate weathering in a tropical river, southwestern India. Chem Geo 300–301:61–69

    Article  Google Scholar 

  • Han GL, Liu CQ (2004) Water geochemistry controlled by carbonate dissolution: a study of the river waters draining karst-dominated terrain, Guizhou Province, China. Chem Geol 204:1–21

    Article  Google Scholar 

  • Hu M, Stallard RF, Edmond JM (1982) Major ion chemistry of some large Chinese rivers. Nature 298:550–553

    Article  Google Scholar 

  • Huang YL, Zhang L, Zhu CX (2012) Survey and analysis of agricultural non-point source pollution in Nansi Lake basin, Shandong Province. Res Environ Sci 25:1243–1249 (in Chinese with English abstract)

    Google Scholar 

  • Huo MQ, Sun Q, Xie P, Bai YH, Li JL, Liu ZL et al (2010) Chemistry character of rain water at urban and rural areas in the north and southeast of China. Acta Sci Nat Univ Pekin 46:991–998 (in Chinese with English abstract)

    Google Scholar 

  • Jiang TS, Sun YW, Yang ZS, Zhang RL, Huang ZF, Wang MY (2012) Analysis of the surface water chemical characteristics variance in the Beiyunhe River basin. J Irrig Drain 32:82–107 (in Chinese with English abstract)

    Google Scholar 

  • Lang YC, Liu CQ, Zhao ZQ, Li SL, Han GL (2006) Geochemistry of surface and ground water in Guiyang, China: water/rock interaction and pollution in a karst hydrological system. Appl Geochem 21:887–903

    Article  Google Scholar 

  • Lang YC, Liu CQ, Liang S, Zhao ZQ, Zhou ZH (2011) Tracing natural and anthropogenic sources of dissolved sulfate in a karst region by using major ion chemistry and stable sulfur isotopes. Appl Geochem 26:S202–S205

    Article  Google Scholar 

  • Levinson AA (1974) Introduction to exploration geochemistry, 1st edn. Appl Publ Ltd, Wilmette

    Google Scholar 

  • Lewis WM, Saunders JF (1989) Concentration and transport of dissolved and suspended substances in the Orinoco River. Biogeochemistry 7:203–240

    Article  Google Scholar 

  • Li T, Mei ZW (1990) The sedimentary evolution and petrochemical characteristics of three tectonic layers in North China. Geotecton Metall 14:275–282 (in Chinese with English abstract)

    Google Scholar 

  • Li J, Zhang J (2005) Chemical weathering processes and atmospheric CO2 consumption of Huanghe River and Changjiang River basins. Chin Geog Sci 15:16–21

    Article  Google Scholar 

  • Li SL, Calmels D, Han GL, Gaillardet J, Liu CQ (2008) Sulfuric acid as an agent of carbonate weathering constrained by δ13CDIC: examples from southwest China. Earth Planet Sci Lett 270:189–199

    Article  Google Scholar 

  • Li SL, Xu Z, Wang H, Wang J, Zhang Q (2009) Geochemistry of the upper Han River basin, China 3: anthropogenic inputs and chemical weathering to the dissolved load. Chem Geo 264:89–95

    Article  Google Scholar 

  • Li ZQ, Li YZ, Meng LX (2011) Study on recharge mechanism of fracture karst groundwater in North Jining of Luxi Plain. Environ Sci Technol 4:46–48 (in Chinese with English abstract)

    Google Scholar 

  • Liu LW (1999) Late quaternary paleosols of Huang-Huai-Hai Plain. Acta Pedol Sin 36:9–14 (in Chinese with English abstract)

    Google Scholar 

  • Liu BJ, Liu CQ, Zhang G, Zhao ZQ, Li SL, Hu J et al (2013) Chemical weathering under mid to cool temperate and monsoon-controlled climate: a study on water geochemistry of the Songhuajiang River system, northeast China. Appl Geochem 31:265–278

    Article  Google Scholar 

  • Mei ZW, Li T (1994) Constitution of rocks and evolution of sedimentary cover in North China platform. Acta Sedimentol Sin 12:29–36 (in Chinese with English abstract)

    Google Scholar 

  • Meybeck M (1986) Composition des ruisseaux non pollue´s de France. Sci Geol Bull 39:3–77

    Google Scholar 

  • Meybeck M (1987) Global chemical weathering of surficial rocks estimated from river dissolved loads. Am J Sci 287:401–428

    Article  Google Scholar 

  • Meybeck M (1998) Man and river interface: multiple impacts on water and particulates chemistry illustrated in the Seine river basin. Hydrobiologia (in press)

  • Meybeck M, Helmer R (1989) The quality of rivers: from pristine stage to global pollution. Glob Planet Chang 1(4):283–309

    Article  Google Scholar 

  • Meyer H, Straus SH, Hetzel R (2009) The role of supergene sulphuric acid during weathering in small river catchments in low mountain ranges of Central Europe: implications for calculating the atmospheric CO2 budget. Chem Geol 268:41–51

    Article  Google Scholar 

  • Millot R, Gaillardet J, Dupré B, Allègre CJ (2002) The global control of silicate weathering rates and the coupling with physical erosion: new insights from rivers of the Canadian Shield. Earth Planet Sci Lett 196:83–98

    Article  Google Scholar 

  • Millot R, Gaillardet J, Dupré B, Allègre CJ (2003) Northern latitude chemical weathering rates: clues from the Mackenzie River basin, Canada. Geochim Cosmochim Acta 67(7):1305–1329

    Article  Google Scholar 

  • Moon S, Huh Y, Qin J, Pho VN (2007) Chemical weathering in the Hong (Red) River basin: rates of silicate weathering and their controlling factors. Geochim Cosmochim Acta 71:1411–1430

    Article  Google Scholar 

  • Moon S, Chamberlain CP, Hilley GE (2014) New estimates of silicate weathering rates and their uncertainties in global rivers. Geochim Cosmochim Acta 134:257–274

    Article  Google Scholar 

  • Moquet JS, Crave A, Viers J, Seyler P, Armijos E, Bourrel L et al (2011) Chemical weathering and atmospheric/soil CO2 uptake in the Andean and Foreland Amazon basins. Chem Geo 287:1–26

    Article  Google Scholar 

  • Moquet JS, Maurice L, Crave A, Viers J, Arevalo N, Lagane C et al (2014) Cl and Na fluxes in an Andean foreland basin of the Peruvian Amazon: an anthropogenic impact evidence. Aquat Geochem 20:613–637

    Article  Google Scholar 

  • Noh H, Huh Y, Qin J, Ellis A (2009) Chemical weathering in the three rivers region of Eastern Tibet. Geochim Cosmochim Acta 73:1857–1877

    Article  Google Scholar 

  • Palmer MA, Bernhardt ES, Schlesinger WH, Eshleman KN, FoufoulaGeorgiou E, Hendryx MS et al (2010) Mountaintop mining consequences. Science 327:148–149

    Article  Google Scholar 

  • Pattanaik JK, Balakrishnan S, Bhutani R, Singh P (2013) Estimation of weathering rates and CO2 drawdown based on solute load: significance of granulites and gneisses dominated weathering in the Kaveri River basin, Southern India. Geochim Cosmochim Acta 121:611–636

    Article  Google Scholar 

  • Price RJ, Rice CK, Szymanski WD (2013) Mass-balance modeling of mineral weathering rates and CO2 consumption in the forested, metabasaltic Hauver branch watershed, Catoctin Mountain, Maryland, USA. Earth Surf Process Landf 38:859–875

    Article  Google Scholar 

  • Rai SK, Singh SK, Krishnaswami S (2010) Chemical weathering in the plain and peninsular sub-basins of the Ganga: impact on major ion chemistry and elemental fluxes. Geochim Cosmochim Acta 74:2340–2355

    Article  Google Scholar 

  • Roy S, Gaillardet J, Allegre CJ (1999) Geochemistry of dissolved and suspended loads of the Seine River, France: anthropogenic impact, carbonate and silicate weathering. Geochim Cosmochim Acta 63:1277–1292

    Article  Google Scholar 

  • Sarin MM, Krishnaswami S, Dilli K, Somayajulu BLK, Moore WS (1989) Major ion chemistry of the Ganga–Brahmaputra river system: weathering processes and fluxes to the Bay of Bengal. Geochim Cosmochim Acta 53:997–1009

    Article  Google Scholar 

  • Shao SX, Guo SQ, Han SH (1989) Geomorphic structures and evolution of Huang-Huai-Hai plain in China. Acta Geogr Sin 44:314–322 (in Chinese with English abstract)

    Google Scholar 

  • Stallard RF, Edmond JM (1981) Geochemistry of the Amazon 1: precipitation chemistry and the marine contribution to the dissolved load at the time of peak discharge. J Geophys Res 86:9844–9855

    Article  Google Scholar 

  • Stallard RF, Edmond JM (1983) Geochemistry of the Amazon 2: the influence of geology and weathering environment on dissolved load. J Geophys Res 88:9671–9688

    Article  Google Scholar 

  • Tremblay GH, Rivard L (1985) Analytical results St Lawrence River 1981–1983 In: Degens, ET, Kempe S, Herrera R (eds) Transport of carbon and minerals in major world rivers Mitt Geol-Palaont Inst Univ Hamburg, SCOPE/UNEP Sonderband 58:331–335

  • Wang M (2015) Study of relationship between water resources protection of Yangtze River and basin economic-social development. Yangtze River 46:75–78 (in Chinese with English abstract)

    Google Scholar 

  • Wang CF, Ongley ED (2004) Transjurisdictional water pollution management: the Huai River Example. Water Int 29:290–298

    Article  Google Scholar 

  • Wang Y, Ge F, Liu X, Gao J, Cheng S, Wang W et al (2006) Study on the precipitation chemistry and atmospheric transport at the Mount Taishan. Acta Sci Circumst 26:1187–1194 (in Chinese with English abstract)

    Google Scholar 

  • West AJ, Galy A, Bickle M (2005) Tectonic and climatic controls on silicate weathering. Earth Planet Sci Lett 235:211–228

    Article  Google Scholar 

  • Wu L, Huh Y, Qin J, Du G, Lee SD (2005) Chemical weathering in the Upper Huang He (Yellow River) draining the eastern Qinghai-Tibet Plateau. Geochim Cosmochim Acta 69:5279–5294

    Article  Google Scholar 

  • Wu ZH, Mu JB, Xie G, Lu CG, Zhu J (2010) Analysis of water environmental quality variation trends in Nansihu-Lake and its joined rivers. Res Environ Sci 23:1167–1173 (in Chinese with English abstract)

    Google Scholar 

  • Wu W, Zheng H, Yang J, Luo C, Zhou B (2013) Chemical weathering, atmospheric CO2 consumption, and the controlling factors in a subtropical metamorphic-hosted watershed. Chem Geo 356:141–150

    Article  Google Scholar 

  • Xiao J, Jin Z, Ding H, Wang J, Zhang F (2012) Geochemistry and solute sources of surface waters of the Tarim river basin in the extreme arid region, NW Tibetan plateau. J Asian Earth Sci 54–55:162–173

    Article  Google Scholar 

  • Xu Z, Liu CQ (2007) Chemical weathering in the upper reaches of Xijiang River draining the Yunnan–Guizhou Plateau, Southwest China. Chem Geol 239:83–95

    Article  Google Scholar 

  • Xu Z, Liu CQ (2010) Water geochemistry of the Xijiang basin rivers, South China: chemical weathering and CO2 consumption. Appl Geochem 25:1603–1614

    Article  Google Scholar 

  • Zhang ZQ (1991) REE geochemistry of the early Precambrian granite-greenstone terrain in western Shandong, China. ShanDong Geol 7(2):76–88 (in Chinese with English abstract)

    Google Scholar 

  • Zhang LT (1999) Analysis of portion of the ternary diagram for major ions in river water of Pearl River system. Acta Sci Natural Univ SunYa Tseni 39:102–105 (in Chinese with English abstract)

    Google Scholar 

  • Zhang J, Huang WW, Liu MG, Zhou Q (1990) Drainage basin weathering and major element transport of two large Chinese rivers (Huanghe and Changjiang). J Geophys Res 95:3277–13288

    Google Scholar 

  • Zhang J, Huang WW, Letolle R, Jusserand C (1995) Major element chemistry of the Huanghe, China: weathering processes and chemical fluxes. J Hydrol 168:173–203

    Article  Google Scholar 

  • Zhang MY, Wang SJ, Wu FC, Yuan XH, Zhang Y (2007a) Chemical compositions of wet precipitation and anthropogenic influences at a developing urban site in southeastern China. Atmos Res 84:311–322

    Article  Google Scholar 

  • Zhang SR, Lu XX, Higgitt DL, Chen CT, Sun HG, Han JT (2007b) Water chemistry of the Zhujiang (Pearl River): natural processes and anthropogenic influences. J Geophys Res 112:F01011. doi:10.1029/2006JF000493

    Google Scholar 

  • Zhang L, Song X, Xia J, Yuan R, Zhang Y, Liu X et al (2011) Major element chemistry of the Huai River basin, China. Appl Geochem 26:293–300

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the National Nature Science Foundation of China (41372212), the Fundamental Research Funds for the Central Universities (2652014003), the State Key Laboratory of BGEG (GBL2135, GBL201405) and the fund for advantage discipline of geochemistry in CUGB. It was also supported by the Shandong Provincial Department of Land and Resources with the project “Assessment of ecological and geological environment influenced by Coal mining in the area of Nansihu-Lake (LUKANZI 2012-36)”. We thank the project members of the Shandong Provincial Institute of Land Surveying and Mapping for their help with the field work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Li Yuan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Calculation steps, Figs. S1–S3 and Tables S1–S5 (PDF 499 kb)

Appendix: Calculation methods (Eqs. 1–21)

Appendix: Calculation methods (Eqs. 121)

Calculation methods

Contributions of various reservoirs

Atmospheric inputs

$${\text{X}}_{\text{atm}} = {\text{ F}}^{ - }_{\text{atm}} \times \left[ {{\text{X}}/{\text{F}}^{ - } } \right]_{\text{rain}}$$
(1)

Anthropogenic inputs

$$\left[ {\left( {{\text{Cl}}^{ - } + {\text{SO}}_{4}^{2 - } } \right)/{\text{Na}}^{ + } } \right]_{\text{anth}} = {{\left[ {\left( {{\text{Cl}}^{ - } + {\text{SO}}_{4}^{2 - } } \right)_{\text{S01}} {-}\left( {{\text{Cl}}^{ - } + {\text{SO}}_{4}^{2 - } } \right)_{\text{S02}} } \right]} / {\left[ {{\text{Na}}_{\text{S01}}^{ + } {-}{\text{Na}}_{\text{S02}}^{ + } } \right]}}$$
(2)
$${\text{NO}}_{{3\,{\text{agr}}}}^{ - } = {\text{NO}}_{{3\,{\text{riv}}}}^{ - } - {\text{ NO}}_{{3\,{\text{atm}}}}^{ - } - {\text{ NO}}_{{3\,{\text{ind}}}}^{ - }$$
(3)

Silicates

$$K^{ + }_{\text{sil}} = \, K^{ + }_{\text{riv}} {-} \, K^{ + }_{\text{atm}}$$
(4)
$${\text{Ca}}^{2 + }_{\text{sil}} = {\text{ K}}^{ + }_{\text{sil}} \times \, \left[ {{\text{Ca}}^{2 + } /{\text{K}}^{ + } } \right]_{\text{gg}}$$
(5)
$${\text{Mg}}^{2 + }_{\text{sil}} = {\text{K}}^{ + }_{\text{sil}} \times \, \left[ {{\text{Mg}}^{2 + } /{\text{K}}^{ + } } \right]_{\text{gg}}$$
(6)
$${\text{Na}}^{ + }_{\text{sil}} = {\text{ K}}^{ + }_{\text{sil}} \times \left[ {{\text{Na}}^{ + } /{\text{K}}^{ + } } \right]_{\text{gg}}$$
(7)

Chemical budget and chemical weathering rate estimation

$${\text{X}}_{\text{riv}} = {\text{ X}}_{\text{atm}} + {\text{ X}}_{\text{anth}} + {\text{ X}}_{\text{eva}} + {\text{ X}}_{\text{carb}} + {\text{ X}}_{\text{sil}}$$
(8)
$${\text{F}}^{ - }_{\text{riv}} = {\text{ F}}^{ - }_{\text{atm}}$$
(9)
$${\text{K}}^{ + }_{\text{riv}} = {\text{ K}}^{ + }_{\text{atm}} + {\text{ K}}^{ + }_{\text{sil}}$$
(10)
$${\text{NO}}_{{3\,{\text{riv}}}}^{ - } = {\text{ NO}}_{{3\,{\text{atm}}}}^{ - } + {\text{ NO}}_{{3\,{\text{anth}}}}^{ - }$$
(11)
$${\text{Cl}}^{ - }_{\text{riv}} = {\text{ Cl}}^{ - }_{\text{atm}} + {\text{ Cl}}^{ - }_{\text{anth}} + {\text{ Cl}}^{ - }_{\text{eva}}$$
(12)
$${\text{SO}}_{{ 4\;{\text{riv}}}}^{2 - } = {\text{ SO}}_{{ 4\;{\text{atm}}}}^{2 - } + {\text{ SO}}_{{ 4\;{\text{anth}}}}^{2 - } + {\text{ SO}}_{{ 4\;{\text{eva}}}}^{2 - } + {\text{ SO}}_{{ 4\;{\text{pyr}}}}^{2 - }$$
(13)
$${\text{Na}}^{ + }_{\text{riv}} = {\text{ Na}}^{ + }_{\text{atm}} + {\text{ Na}}^{ + }_{\text{anth}} + {\text{ Na}}^{ + }_{\text{eva}} + {\text{Na}}^{ + }_{\text{sil}}$$
(14)
$${\text{Ca}}^{{ 2 { + }}}_{\text{riv}} = {\text{ Ca}}^{{ 2 { + }}}_{\text{atm}} + {\text{ Ca}}^{{ 2 { + }}}_{\text{eva}} + {\text{ Ca}}^{{ 2 { + }}}_{\text{carb}} + {\text{Ca}}^{{ 2 { + }}}_{\text{sil}}$$
(15)
$${\text{Mg}}^{{ 2 { + }}}_{\text{riv}} = {\text{ Mg}}^{{ 2 { + }}}_{\text{atm}} + {\text{ Mg}}^{{ 2 { + }}}_{\text{eva}} + {\text{ Mg}}^{{ 2 { + }}}_{\text{carb}} + {\text{ Mg}}^{{ 2 { + }}}_{\text{si}}$$
(16)
$${\text{Cationic TDS}}_{\text{sil}} = \, \left[ {23.0 \times {\text{Na}}^{ + } + \, 39.1 \times {\text{K}}^{ + } + \, 20.0 \times {\text{Ca}}^{2 + } + \, 12.1 \times {\text{Mg}}^{2 + } } \right]_{\text{sil}} + \, 60.1 \times {\text{SiO}}_{2}$$
(17)
$${\text{Cationic TDS}}_{\text{car}} = \, \left[ {20.0 \times {\text{Ca}}^{2 + } + \, 12.1 \times {\text{Mg}}^{2 + } } \right]_{\text{carb}}$$
(18)
$${\text{Cationic TDS}}_{\text{eva}} = \, \left[ {23.0 \times {\text{Na}}^{ + } + \, 20.0 \times {\text{Ca}}^{2 + } + \, 12.1 \times {\text{Mg}}^{2 + } } \right]_{\text{eva}}$$
(19)
$${\text{CO}}_{{ 2 {\text{sil}}}} = \, \left[ {{\text{Na}}^{ + } + {\text{ K}}^{ + } + {\text{ Ca}}^{2 + } + {\text{ Mg}}^{2 + } } \right]_{\text{sil}}$$
(20)
$${\text{CO}}_{{ 2 {\text{carb}}}} = \, 0.5 \times \left[ {{\text{Ca}}^{2 + } + {\text{ Mg}}^{2 + } } \right]_{\text{carb}}$$
(21)

where units in all equations are μeq/L; X = K+, Na+, Ca2+, Mg2+, HCO3 , Cl-, SO4 2−, NO3 ; S01, S02 = the concentration of the analyzed sample S01, S02; riv river, representing the concentration in river water, rain rain water, representing the concentration in rain water, gg granite gneiss, representing the abundance in granite gneiss, atm atmosphere, representing the atmospheric contribution to river water, anth anthropogenic, representing the anthropogenic contribution to river water, including agricultural and industrial contributions, arg agricultural, representing the agricultural contribution to river water, ind industrial, representing the industrial contribution to river water, eva evaporites, representing the contribution of evaporites to river water, carb carbonates, representing the contribution of carbonates to river water, pyr pyrite, representing the contribution of pyrite oxidation to river water, sil silicates, representing the contribution of silicates to river water.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Yuan, GL., Deng, XR. et al. Major ion geochemistry of the Nansihu Lake basin rivers, North China: chemical weathering and anthropogenic load under intensive industrialization. Environ Earth Sci 75, 453 (2016). https://doi.org/10.1007/s12665-016-5305-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-5305-2

Keywords

Navigation